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Abstract. The paper is dedicated to analysis of normalized intensity-based pointwise algorithms 

for processing dynamic speckle images with spatially varying speckle statistics in non-

destructive visualization of regions of faster or slower changes across an object. Both existing 

and newly proposed algorithms are analyzed. Extraction of speed of changes is done by acquiring 

correlated in time speckle images formed on the object surface under laser illumination. The 

studied algorithms have been applied to simulated low and high contrast speckle data. Their 

performance has been compared to processing of binary patterns as another approach for dealing 

with varying speckle statistics in the acquired images. The efficiency of the algorithms have been 

checked on the experimental data, including data in a compressed format. We have proven that 

the algorithms with normalization at successive instants by a sum of two intensities or a single 

intensity outperform as a whole the algorithms which apply the time-averaged estimates of the 

mean value and the variance of speckle intensity. 

1. Introduction 

Speed of a process, which leads to micro-changes of topography or a refractive index of an object, is 

encoded in temporal variation of speckle patterns formed on the object surface under laser illumination 

[1,2]. Dynamic laser speckle, called also biospeckle in some applications, has been used for non-

destructive testing of industrial or biological objects.  Monitoring of blood flow perfusion in human 

tissues [3-5], seeds viability [6,7], plants growing and leaves contamination with chemical agents [8,9],  

and penetration of cosmetic ingredients in human skin [10], analysis of ear biometrics [11] and bacterial 

response [12,13],  study of animal reproduction [14], food assessment [15-17], drying of paints, coatings  

and polymer thin films [18,19] have been reported.  

Usage of a two-dimensional (2D) optical sensor enables pointwise application of Dynamic Speckle 

Analysis (DSA), which yields speed distribution in space as a 2D map of a statistical parameter. The 

intensity-based 2D DSA relies on a comparatively large number of correlated in time speckle images to 

produce a single 2D map of activity for visualizing regions of faster or slower intensity fluctuations 

across the objects. This DSA implementation has serious advantages as simplicity of the acquisition set-

up, high spatial resolution and spatial analysis applicable to 3D objects. The main challenge of the 2D  

DSA is the speckle nature of the raw data. The small size of speckle grains in the acquired images results 

in strong spatial intensity fluctuations within the recorded patterns. The relevant information is buried 

in signal-dependent noise, and the choice of the processing algorithm is crucial. The algorithm is 

expected to be fast and robust at non-uniform illumination and to provide a weakly fluctuating estimate 

for constant speed of changes. Another substantial issue in the 2D DSA is storage, transfer and 
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processing of huge amount of data for monitoring a process when a sequence of activity maps is built 

in time. This makes necessary compression of the speckle data and raises the question of the efficiency 

of the algorithms in processing compressed data.  

 We focus in this work on normalization approaches for processing data with spatially varying 

speckle statistics. A typical example of such statistics is acquisition of speckle images under non-

uniform illumination. Both existing and newly proposed algorithms are analyzed. We compared 

performance of the analysed algorithms by processing simulated and experimental data.   

2. Normalized processing 

2.1. Description of the raw data  

For the intensity-based dynamic speckle measurement, a CMOS or a CCD camera records speckle 

images of size yx NN   pixels at a pixel interval   and a time interval t  between the frames. This time 

interval should ensure recording of correlated patterns. Exposure time is small to avoid speckle 

averaging during the recording. The dynamic range of the camera is adjusted to the dynamic range of 

the recorded data. The raw data usually are 8-bit encoded intensity images. An object on a vibration-

insulated table is illuminated by the linearly polarized laser light. The illuminating beam is spatially 

filtered, expanded and collimated. Nevertheless, the intensity may be different at its centre and 

periphery. This results in speckle statistics which varies not only in time but also in space. The non-

normalized processing encounters difficulties in correct detection of activity, and some normalization is 

required.  

A 2D activity map is built from N speckle images. The input data for a pointwise processing 

algorithm are sequences yxNikikik NkNiIII ...1,...1;..., ,2,1,   where nikI ,  is the intensity at pixel   ki ,  and 

instant tn . The activity estimate is obtained by averaging within the time interval, tNT  .  Temporal 

correlation function,  ikR , where tm  is the time lag between the compared intensities and 0m  

is an integer, characterizes intensity fluctuations at pixel   ki , . The width of  ikR  gives the temporal 

correlation radius   kic , . For non-uniform illumination, the variance of intensity fluctuations, 2

ik , in 

    ikikikR 2  varies from point to point;  ik  is the normalized correlation function respectively.  

To check the performance of different normalized algorithms, we generated speckle patterns for a 

synthetic object consisting of four rectangular regions Z1, Z2, Z3 and Z4 of the same size with temporal 

correlation radii of intensity fluctuations equal to 10 t, 20 t, 40 t and 80 t respectively (figure 1a). 

Simulation was based on producing correlated wrapped phase distributions in the plane of the object 

that were propagated to the sensor plane through the objective lens. A 2D array of random delta-

correlated phase values uniformly distributed from 0 to 2π was used as an initial phase, and normal 

distribution was accepted   for the phase change in time due to normal movement of the scattering centres 

with respect to the surface. Mutual independence was accepted for the amplitudes and phases of the 

scattered light at each scattering centre and between the centres. We used      ki
cik

,/exp   

for description of the modelled processes. The standard deviation of the phase change between 

successive images was  
 

2/1
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 . Speckle integration by the camera pixels was also 

taken into account. Simulation procedure is described in more details in [20]. We generated speckle 

patterns of size 256×256 pixels for both low and high contrast speckle at wavelength 532 nm for uniform 

and non-uniform illumination. A Gaussian intensity distribution      kiIkiI ,exp,
00

  where 
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ki
ki with  210  is used for simulation. The histograms of 

intensity fluctuations across the object and the speckle patterns for the simulated four cases are given in 

figure 1(b) and figure 1(c). At uniform illumination, the speckle statistics is the same in the areas Z1, 

Z2, Z3 and Z4 and is described by symmetric or asymmetric intensity distributions depending on the 
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contrast. Speckle has the same statistics in the areas of higher or lower activity, and averaging in time is 

required to visualize these areas. At non-uniform illumination, the histograms of intensity in the acquired 

patterns become asymmetric both for the low and the high contrast due to darker areas in the acquired 

images.   

2.2. Normalized processing of a test object 

A standard approach to deal with non-uniform illumination is to normalize using the estimates of the 

variance or standard deviation of temporal intensity fluctuations at each point. Besides the normalized 

temporal correlation function [21]:  

         iknik

mN

n
ikmnik

ik

IIII
N

tmkiCmkiC ˆˆ
ˆ

1
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N

n
nikik INI

1
,

1ˆ are the estimates of the variance and the average 

intensity at point   ki , , effective evaluation of activity is provided by the normalized estimates of the 

structure function, 1Ŝ  , and modified structure function, 2Ŝ , as follows [20,21]: 
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Figure 1. Synthetic object with 4 activity regions Z1, Z2, Z3, Z4 with 

temporal correlation radii of intensity fluctuations equal to 10t, 20t, 

40t and 80t (a), speckle intensity histograms (b) for patterns (c) 

obtained for the object at low contrast and uniform (1) and non-uniform 

(2) illumination and high contrast and uniform (3) and non-uniform (4) 

illumination; wavelength 532nm, image size 256×256 pixels. 

 

 

The need to evaluate the average value and the variance from the sequences of intensity 

values at all pixels, however, complicates these algorithms. Computation of the variance, ik
̂ , 

by averaging in time is reliable at comparatively high ratios between the acquisition time 
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tNT   and the correlation radius, c . In general, the 2D distribution yxik NkNi ...1,...1,ˆ  may 

strongly differ from yxik NkNi ...1,...1,  . Instead of using ik̂ , one may take the average intensity 

value or its square for normalization. Efficiency of such an approach was studied in [22].  

More flexible algorithms can be built by time-averaging of a fraction whose nominator and 

denominator are composed from one or two intensity values acquired at different instants. We 

checked efficiency of several estimates      mfmNmkiS
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n
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estimate 6Ŝ was proposed earlier [22]; )1(ˆ
6 mS  coincides with Fuji’s algorithm [3]. All 

estimates 71
ˆ
S increase at higher activity and are equal to 0 at zero activity with exception of 3Ŝ

which is equal to 1 in the latter case. 

 
Figure 2. Activity maps for a synthetic object with 4 activity regions Z1, Z2, Z3, 

Z4 (a,c,e,g) and the  histograms of the estimates in these regions  (b,d,f,h) for 

estimates  2Ŝ  (a,b,c,d) and 4Ŝ  (e,f,g,h); (a,b,e,f) - low contrast speckle, 

(c,d,g,h) - high contrast speckle; N = 256,  wavelength 532 nm, m = 10. 

 

We applied the algorithms 71
ˆ
S to a sequence of 256 speckle images with low and high 

contrast under non-uniform illumination at 532 nm. The exemplary images taken from the 

processed sequences are given as images 2 and 4 in figure 1(c). The time lag was taken equal 

to 10t. For illustration, we presented in figure 2 the activity maps obtained for 2Ŝ and 4Ŝ . The 

four regions of different activity are clearly seen for both estimates. The contrast of the map 

corresponding to 4Ŝ seems better, especially for the regions Z3 and Z4 of lower activity. This 

is understandable in view that accuracy of determination of the variance estimate, ik
̂  , in these 

regions is rather low at 1

cT  equal to 6.4 and 3.2 respectively. The large number of entries in 

each region (256×64) makes possible evaluation of the probability density function of the 

estimate at a given activity. The histograms of 2Ŝ and 4Ŝ for the four activity regions are also 

shown in figure 2. As is seen, due to strong fluctuations of the estimates, the histograms are 
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rather wide and overlap. The greater the overlap, the lower the sensitivity of the algorithm. For 

73
ˆ
S , the higher the activity, the wider the histogram. The result is opposite for 21

ˆ
S  due to usage 

of the variance estimate determined at decreasing accuracy when activity goes to a lower level.  

 
 

Figure 3. Mean values of the estimates 71
ˆ
S  

normalized to the mean values in Z1, as a 

function of the temporal correlation radius; 

left – low contrast, right – high contrast; N 

= 256,  wavelength 532 nm, m = 10. 

  

 

 

The mean values of the estimates 71
ˆ
S  normalized to the mean value for the highest activity in Z1, 

are shown in figure 3. The mean values as well as the locations of the maximal frequency counts in 

the histograms depend on activity. As expected, the smallest decrease compared to the value in Z1 

is observed for 3Ŝ . This is the fastest algorithm, and despite the low contrast of the map it provided,  

it can be used for monitoring of objects with large variation of activity across their surface. The 

largest decrease corresponds to 1Ŝ . The fall of the mean values, when activity is decreasing, is 

practically the same for the algorithms, 64
ˆ

S . They show rather close behavior to 1Ŝ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Overlap of histograms of the estimates for 

activity regions Z1, Z2, Z3, Z4; (1-2) gives the overlap 

between the histograms in Z1 and Z2, (1-3) – between Z1 

and Z3 etc.; N = 256,  wavelength 532 nm, m = 10. 

 

More important parameter for quantitative characterization of sensitivity of the algorithms is the area 

of overlap of two histograms as a fraction of the total number of entries in a single histogram [20]. Both 

compared histograms have the same number of entries, and, in our case, it is equal to 256×64. The 

smaller the overlap, the higher the sensitivity of the algorithms. The overlap as a fraction of 256×64 

entries for all algorithms 71
ˆ
S  in the cases of low and high contrast speckle is shown in figure 4. The 

most interesting are the groups of results denoted as 1-2, 2-3 and 3-4 that show comparison of estimates 
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in adjacent spatial regions for the considered test object. The results in the group 1-2 correspond to two 

spatial areas with close values of the correlation radii – 10 t and 20 t. For the low contrast case, the 

results for the algorithms 21
ˆ
S  are better than 74

ˆ
S  in the group 1-2 , but the result is opposite for the 

high contrast case. As expected, performance of the algorithm 3Ŝ  is the worst in all cases. Comparison 

of the estimates for evaluation of activity at c equal to 20t and 40t (group 2-3) or 40t and 80t 

(group 3-4) proves that the algorithms 74
ˆ

S slightly outperform the algorithms 21
ˆ
S . They substantially 

outperform 21
ˆ
S  for detection of a high activity area with respect to the low activity area (groups of 

results 1-3, 1-4 and 2-4). Taking in view the additional advantage of faster computation, these algorithms 

can be a preferable choice for processing speckle data with spatially varying statistics.  

Effective solution for visualization of activity for speckle data with spatially varying statistics is 

processing of binary patterns [23]. The mean intensity value, ikÎ , at each point   ki , , can be used as 

a threshold for binarization. Sequences are formed as Nnnik ...2,1,1,   depending on nikI ,  value being 

less or larger than ikÎ  . A polar correlation function is calculated as: 

    mnik

mN

n
nikmNmkiP 






 ,

1
,

1
,,ˆ      (3) 

Contrary to the estimates, 71
ˆ
S , the polar correlation function gets a lower value at higher activity. For 

the test object in figure 1, we obtained the following values for the overlap between the histograms 

corresponding to the four different activities: 0.2894 (0.3067) for Z1 and Z2, 0.1757 (0.2013) and 0.1248 

(0.1484) for Z1 compared to Z3 and Z4 respectively, 0.3446 (0.3592) for Z2 and Z3, 0.2703 (0.2915) 

for Z2 and Z4 and 0.4140 (0.4175) for Z3 and Z4. The values in the brackets correspond to the high 

contrast case. As is seen, this estimator exhibits similar behaviour as the normalized structure and 

modified structure functions. 

3. Processing of experimental data 
For experimental verification of the algorithms, we chose a specially designed circular metal object 

composed from flat annular regions with alternating depths (0 and -2 mm) with respect to the upper 

surface. There are two flat regions at zero depth and two hollow regions - a central circular section and 

an annular region. Different activity on the object surface was created by evaporation of polyester paint, 

which covered the object to form a flat layer. In this way, the hollow regions contained larger quantity 

of paint compared to the flat surface of the other two annular regions. The object was positioned on a 

vibration-insulated table and illuminated with a linearly polarized light from a He-Ne laser at 632.8 nm. 

The drying of the paint produced a dynamic speckle.  The speckle images were recorded as 8-bit encoded 

bitmap images by a color CMOS camera X06c-s (manufactured by Baumer) at interval Δt = 250 ms 

between the frames. The size of the captured images was 780 × 582 pixels. A single image occupied 

1.29 MB, the exposure time was 100 s. 

 An exemplary speckle image in bitmap format is shown in figure 5(a). As is seen, the intensity 

distribution is not uniform within the image. The regions of different activity are in practice 

indistinguishable. We compared normalized processing provided by 1Ŝ , 2Ŝ  and 4Ŝ . The maps of the 

estimates after processing 256 patterns for a time lag equal to 10t are presented in figure 5 (b-d). 

Despite the comparatively long sequence of images, the estimate ik̂ introduces additional fluctuations 

in 1Ŝ and 2Ŝ  and in their maps respectively. This decreases the sensitivity of both estimators. Usage of 

non-normalized structure and modified structure function provides smoother maps at the expense of 

erroneous determination of activity due to the non-uniformity of illumination. The algorithm 4Ŝ gives 

an activity map with enhanced contrast. Evaluation of the processing time on MatLab shows that  
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building a map of size 600×582 pixels for 1Ŝ  and 2Ŝ  requires about 3 times more time than computing 

of the map of 4Ŝ .  

Figure 5.  Speckle pattern acquired for a circular metal object with annular 

regions of different depths in a bitmap format (a) and activity maps for 1Ŝ (b), 2Ŝ

(c) and 4Ŝ (d); N = 256,  wavelength 632.8 nm, m = 10. 

Figure 6.  Speckle pattern acquired for a circular metal object with annular 

regions of different depths in a JPEG format (a) and activity maps for 1Ŝ (b), 

2Ŝ (c) and 4Ŝ (d); N = 256,  wavelength 632.8 nm, m = 10. 

 

Storage of big data arrays for monitoring of processes entails usage of data compression. For the 

intensity-based DSA implementation, we have recently proposed binarization or coarse quantization of 

the acquired images [23,24]. Another solution is to store the data in the JPEG format. A speckle image 

decompressed from a JPEG image stored at quality parameter equal to 70 is shown in figure 6(a). 

Actually, this is the same image as that in figure 5(a). The size of a single image in the JPEG format is 

60.4 KB. The results of processing 256 decompressed JPEG images by using 1Ŝ , 2Ŝ  and 4Ŝ  are 

presented in figure 6(c-d). The contrast of the maps for the normalized structure and modified structure 

functions is not very good. However, the result provided by 4Ŝ  is acceptable because the regions of 

different activity are clearly visualized. The only drawback is an artefact expressed as a regular grid of 

slightly higher values of the estimate. This grid related to the JPEG compression scheme is obscured in 

the maps in figure 6(b) and figure 6(c) due to different normalization. Since the presence of the grid 

does not interfere with characterization of activity, one may conclude that JPEG compression is 

applicable for the DSA data.  

In summary, we have studied normalization in intensity-based DSA for processing raw speckle data 

with spatially varying statistics, as e.g. under non-uniform illumination. We analysed the existing 

correlation-based algorithms in which normalization is done by using the estimate of the variance at 

each point. We proposed and studied modifications of algorithms which use for normalization at a given 

instant a sum of two intensities or a single intensity.  We checked efficiency of the algorithms by 

applying them to low and high contrast simulated data and also compared them for processing of binary 

patterns as another approach for dealing with varying speckle statistics in the acquired images. The 

efficiency of the algorithms have been checked for processing experimental data, including data in a 

compressed format. We have proven that the pointwise algorithms in which normalization is done at 
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each instant by using one or two intensity values are more efficient than the algorithms applying the 

time-averaged estimates of the mean value and the variance of speckle intensity. 
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