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Introduction

Three-dimensional time-varying scene capture is a key component of dynamic
3D displays. Fast remote non-destructive parallel acquisition of information
being inherent property of optical methods makes them extremely suitable
for capturing in 3D television systems. Recent advance in computers, image
sensors and digital signal processing becomes a powerful vehicle that moti-
vates the rapid progress in optical profilometry and metrology and stimulates
development of various optical techniques for precise measurement of 3D coor-
dinates in machine design, industrial inspection, prototyping, machine vision,
robotics, biomedical investigation, 3D imaging, game industry, culture her-
itage protection, advertising, information exchange and other fields of modern
information technologies.

To meet the requirements of capturing for the needs of 3D dynamic dis-
plays the optical profilometric methods and systems must ensure accurate
automated real-time full-field measurement of absolute 3D coordinates in a
large dynamic range without loss of information due to shadowing and oc-
clusion. The technical simplicity, reliability and cost of capturing systems are
also crucial factors. Some of the already commercialized optical systems for
3D profilometry of real objects are based on laser scanning. As the scanning
of surfaces is realized one-dimensionally in space and time (point by point
or line by line) at limited speed, especially for large-scale scene in out-door
conditions, these systems are subject to severe errors caused by vibration,
air turbulence and other environmental influence and are not applicable for
measurement in real time. Among existing techniques, the methods which
rely on functional relationship of the sought object data with the phase of a
periodic fringe pattern projected onto and reflected from the object occupy a
special place as a full-field metrological means with non-complex set-ups and
processing algorithms that are easy to implement in outdoor and industrial
environment. Pattern Projection Profilometry (PPP) includes a wide class
of optical methods for contouring and shape measurement going back to the
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classical shadow and projection moiré topography [1, 2] and the well-known
and widely used since the ancient times triangulation. Nowadays, pattern
projection systems enable fast non-ambiguious precise measurement of sur-
face profile of wide variety of objects from plastic zones in the notch of the
micro-cracks in fracture mechanics [3] and micro-components [4] to cultural
heritage monuments [5]. An optimized and equipped with a spatial light mod-
ulator (SLM) system provides measurement accuracy up to 5.10−5 from the
object size [1].

The main goal of this Chapter is to consider phase-measuring methods
in pattern projection profilometry as a perspective branch of structured light
methods for shape measurement emphasizing on the possibility to apply these
methods for time-varying scene capturing in the dynamic 3D display. The
Chapter consists of 3 Sections. Section 1 gives the basic principles of PPP and
Phase Measuring Profilometry (PMP), describes the means for generation of
sinusoidal fringe patterns, formulates the tasks of phase demodulation in a
profilometric system and points out the typical error sources influencing the
measurement. Section 2 deals with phase-retrieval methods. They are divided
in two groups – multiple frame and single frame methods or temporal and
spatial methods. Following this division, we start with the phase-shifting ap-
proach which is outlined with its pros and cons. Special attention is dedicated
to error-compensating algorithms and generalized phase-shifting techniques.
Among special methods, the Fourier transform method is discussed in detail.
The generic limitations, important accuracy issues and different approaches
for carrier removal are enlightened. Space-frequency representations as the
wavelet and windowed Fourier transforms for phase demodulation are also
considered. Other pointwise strategies for demodulation from a single frame as
quadrature filters, phase-locked loop and regularized phase tracking are briefly
presented. The problem of phase unwrapping which is essential for many of
the phase retrieval algorithms is explained with classification of the existing
phase-unwrapping approaches. The Chapter also includes the developed by
the Central Laboratory of Optical Storage and Processing of Information to
the Bulgarian Academy of Sciences (CLOSPI-BAS) experimental set-ups as
well as the technical solutions of problems associated with measurement of
the absolute 3D coordinates of the objects and the loss of information due to
shadowing effect. In the end, we discuss the phase demodulation techniques
from the point of view of observation of fast dynamic processes and the current
development of real-time measurements in the PMP. This work is supported
by EC within FP6 under Contract 511568 “3DTV”.

1 Pattern Projection Profilometry

1.1 General Description

The principle of PPP is elucidated with the scheme depicted in Fig. 1. The
optical axes of both projector system and observation system are crossed at
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Fig. 1. Schematic of pattern projection profilometry

a certain plane called reference plane. Although there exist methods based
on a random pattern projection, the PPP generally relies on structured light
projection [1]. In structured light techniques a light pattern of a regular struc-
ture such as a single stripe, multiple stripes, gradients, grids, binary bars, or
intensity modulated fringes as e.g. a sine-wave, is projected onto the object.
The object reflects the deformed light pattern when observed from another
angle. Analysis of the deformed image captured with a CCD camera yields

AU: We have
shortened the
running head. Is
this ok.

the 3D coordinates of the object provided known positions of the camera,
the projector and the object. The procedure to obtain the required geometric
relationships for calculation of coordinates is called camera calibration [6].

The accuracy of the measurement crucially depends on correct determi-
nation of the stripe orders of the reflected patterns and on their proper con-
nection to the corresponding orders in the projected patterns. This presumes
one or more patterns to be projected – the simpler the pattern structure, the
bigger the number of patterns required to derive the object’s profile. For ex-
ample, in the so-called Gray-code method systems [7] several binary patterns
of varying spatial frequency are projected. Number of projections needed to
compensate scarce information in binary pattern projection is substantially re-
duced by intensity or colour modulation of the projected patterns. Projection
of more complicated patterns with increased number of stripes and inten-
sity differences between the stripes involves more accurate but more difficult
interpretation of the captured images.

A detailed review and classification of coded patterns used in projec-
tion techniques for the coordinates measurement is presented in [8]. The
patterns are unified in three subdivisions based on spatial, temporal (time-
multiplexing) or direct codification. The first group comprises patterns whose
points are coded using information from the neighbouring pixels. The advan-
tage of such an approach is capability for measurement of time-varying scenes.
Its disadvantage is the complicated decoding stage due to shadowing effect as
the surrounding area cannot always be recovered. Time-multiplexing approach
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is based on measurement of intensity values for every pixel as a sequence in
time. In practice, this is achieved by successive projection of a set of patterns
onto the object surface that limits its application only to static measurements.
The codeword for a given pixel is usually formed by a sequence of intensity
values for that pixel across the projected patterns. The third subdivision is
based on direct codification which means that each point of the pattern is
identified just by itself. There are two ways to obtain pixel coordinates using
this type of pattern: by increasing the range of colour values or by introduc-
ing periodicity in the pattern. These techniques are very sensitive to noise
due to vibration, shadowing, saturation or ill-illumination. Thus, preliminary
calibration is needed in order to eliminate the colour of the objects using one
or more reference images that make the method inapplicable for time-varying
scenes measurements.

An attractive approach among structured light methods is the phase mea-
suring profilometry (PMP) [9, 10] or fringe projection profilometry, in which
the parameter being measured is encoded in the phase of a two-dimensional
(2D) periodic fringe pattern. The main obligatory or optional steps of the PMP
are shown schematically in Fig. 2. The phase measuring method enables deter-
mination of 3D coordinates of the object with respect to a reference plane or
of absolute 3D coordinates of the object itself. The phase extraction requires a
limited number of patterns and for some methods may need only one pattern,
thus making real-time processing possible. Nowadays, the PMP is a highly
sensitive tool in machine vision, computer-aided design, manufacturing, en-
gineering, virtual reality, and medical diagnostics. A possibility for real-time
remote shape control without the simultaneous physical presence of the two
objects by using a comparative digital holography is shown in [11]. For the
purpose, the digital hologram of the master object is recorded at one location
and transmitted via Internet or using a telecommunication network to the lo-
cation of the tested object where it is fed into a spatial light modulator (SLM).

1.2 Methods for Pattern Projection

In general, the pattern projected onto the object in the PMP is described
by a periodic function, f ∈ [−1, 1]. The most of the developed algorithms

Constraints 

Fringe
pattern

Processing
algorithm

Coordinates
Phase

retrieval Object Projection

UnwrappingC

Fig. 2. Block-scheme of phase-measuring profilometry
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in the PMP presume a sinusoidal profile of fringes, which means that these
algorithms are inherently free of errors only at perfect sinusoidal fringe pro-
jection. Projection of purely sinusoidal fringes is not an easy task. The fringes
that fulfil the requirement of f = cos[. . .] can be projected by coherent light
interference of two enlarged and collimated beams. As the fringes are in focus
in the whole space, this method makes large-depth and large-angle measure-
ments possible, however at limited lateral field of measurement, restricted by
the diameter of the collimating lens. The main drawback of interferometri-
cally created fringes is the complexity of the used set-up and vulnerability to
the environmental influences as well as the inevitable speckle noise produced
by coherent illumination. An interesting idea how to keep the advantages of
coherent illumination and to avoid the speckle noise is proposed in [12] where
the light source is created by launching ultra short laser pulses into highly
nonlinear photonic crystal fibres.

Using of conventional imaging system with different types of single-,
dual-, and multiple-frequency diffraction gratings, as an amplitude or phase
sinusoidal grating or Ronchi grating, enlarges the field of measurement and
avoids the speckle noise, however, at the expense of higher harmonics in the
projected fringes. In such systems, a care should be taken to decrease the
influence of the higher harmonics, e.g. by defocused projection of a Ronchi
grating or by using an area modulation grating to encode almost ideal si-
nusoidal transparency as it is described in [9, 13]. A new type of projec-
tion unit based on a diffractive optical element in the form of saw tooth
phase grating is described in [14]. The use of a programmable SLM, e.g.
liquiud crystal display (LCD) [15, 16] or digital micro-mirror device (DMD)
[17, 18, 19], permits to control very precisely the spacing, colour and struc-
ture of the projected fringes [20, 21], and to miniaturize the fringe projec-
tion system enabling applications in space-restricted environment [22]. Syn-
thetic FPs produced by an SLM, however, also suffer from the presence of
the higher harmonics. The discrete nature of the projected fringes entails
tiny discontinuities in the projected pattern that lead to loss of informa-
tion. This problem is more serious for the LCD projectors whereas the cur-
rently available DMD chips with 4k × 4k pixel resolution make the digital
fringe discontinuities a minor problem [23]. For illustration, Figs. 3–5 show
schematically implementation of the PMP based on classical Max-Zhender
interferometer (Fig. 3) [24], on DMD projection (Fig. 4) [25] and by us-
ing a phase grating (Fig. 5) [26]. The wrapped phase maps and 3D recon-
struction of the objects for these three types of illumination are presented in
Fig. 6.

1.3 Phase Demodulation

The 2D fringe pattern (FP) that is phase modulated by the physical object
being measured may be represented by the following mathematical expression:

I(�r, t) = IB(�r, t) + IV (�r, t)f [ϕ(�r, t) + φ(�r, t)] (1)
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Fig. 3. Fringe projection system, based on a Mach-Zhender interferometer: L – lens;
BS – beam splitter; SF – spatial filter; P – prism; PLZT – phase-stepping device

Fig. 4. Fringe projection system, based on computer generated fringe patterns.
L – lens
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Fig. 5. Fringe projection system based on a sinusoidal phase grating; L – lens

where IB(�r, t) is a slowly varying background intensity at a point �r(x, y) and
a moment t, IV (�r, t) is the fringe visibility that is also a low-frequency signal,
ϕ(�r, t) is the phase term related to the measured parameter, e.g. object profile.
The phase term φ(�r, t) is optional being introduced during the formation of the
waveform f or during the phase evaluation. The continuous FP (1) recorded
at a moment t is imaged over a CCD camera and digitized for further analysis
as a 2D matrix of quantized intensities Iij ≡ I(x = iΔx, y = jΔy) with di-
mensions Nx ×Ny, where Δx and Δy are the sampling intervals along X and
Y axes and define the spatial resolution, Nx is the number of columns and Ny

is the number of rows. The camera spatial resolution is a crucial parameter
for techniques based on the principle of optical triangulation. The brightness
of each individual matrix element (pixel) is given by an integer that varies
from the minimum intensity, equal to 0, to the maximum intensity, equal e.g.
to 255. The purpose of computer-aided fringe analysis is to determine ϕ(�r, t)
across the pattern and to extract the spatial variation of the parameter being

Fig. 6. Wrapped phase maps and 3D reconstruction of objects obtained with sinu-
soidal fringes generated using a) interferometer, b) DMD, c) phase grating
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measured. In the case of profilometry, once the phase of the deformed wave-
form is restored, nonambiguous depth or height values can be computed. The
process of phase retrieval is often called phase evaluation or phase demodu-
lation. The fringe density in the FP is proportional to the spatial gradient of
the phase [27]. Hence evaluation of the fringe density is also close to phase
demodulation.

In general, the phase retrieval includes the steps:

(i) Phase evaluation step in which a spatial distribution of the phase, the
so-called phase map, is calculated using one or more FPs. As the phase-
retrieval involves nonlinear operations, implementation of many algorithms
requires some constraints to be applied.

(ii) The output of the phase evaluation step, in most cases, yields phase values
wrapped onto the range −π to π, which entails restoration of the unknown
multiple of 2π at each point. Phase unwrapping step is a central step to
these algorithms, especially for realization of the automatic fringe analysis.

(iii) Elimination of additional phase terms introduced to facilitate phase mea-
surement by an adequate least squares fit, an iterative process or some
other method is sometimes required.

Historically, the PMP has emerged from the classical moiré topography [28],
in which the fringes modulated by the object surface create a moiré pattern.
In the dawn of the moiré topography operator intervention was required for
assignment of fringe-orders, determination of fringe extrema or interpositions.
Over the years, the phase-measuring systems with coherent and non-coherent
illumination that realize the principles of moiré, speckle and holographic inter-
ferometry have been extensively developed for measurement of a wide range
of physical parameters such as depth, surface profile, displacement, strain, de-
formation, vibration, refractive index, fluid flow, heat transfer, temperature
gradients, etc. The development of interferometric methodology, image pro-
cessing, and computer hardware govern the rapid progress in automation of
fringe analysis. Gradually, a host of phase evaluation algorithms have been
proposed and tested. A detailed overview of phase estimation methods is given
in [29]. In terms of methodology, most algorithms fall into either of two cat-
egories: temporal or spatial analysis. A common feature of temporal analysis
methods is that the phase value of a pixel is extracted based on the phase-
shifted intensities of this pixel. Spatial analysis methods extract a phase value
by evaluating the intensity of a neighbourhood of the pixel being studied
[30]. A temporal analysis method is the phase-shifting profilometry. Typical
spatial analysis methods are Fourier transforms methods with carrier fringes
and without carrier fringes. Recently, the wavelet transform method has
started to gain popularity. A crucial requirement for implementation of any
algorithm is the ability for automatic analysis of FPs [31]. Another important
requirement for capture of 3D coordinates is to perform the measurement in
real time. From this point of view, the methods capable to extract phase in-
formation from a single frame are the most perspective. In order to replace
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the conventional 3D coordinate measurement machines using contact styli,
the PMP should be able to measure diffusely reflecting surfaces and to derive
correct information about discontinuous structures such as steps, holes, and
protrusions [32].

1.4 Conversion from Phase Map to Coordinates

Usually, in the PMP the depth of the object is determined with respect to a
reference plane. Two measurements are made for the object and for the refer-
ence plane that yield two phase distributions ϕobj(x, y) and ϕref (x, y), respec-
tively. The object profile is retrieved from the phase difference, Δϕ(x, y) =
ϕobj(x, y) − ϕref (x, y). Calibration of the measurement system, i.e. how to
calculate the 3D coordinates of the object surface points from a phase map,
is another important issue of all full-field phase measurement methods. The
geometry of a conventional PMP system is depicted in Fig. 7. The reference
plane is normal to the optical axis of the camera and passes through the cross-
point of the optical axes of the projector and the camera. The plane XCOYC

of the Cartesian coordinate system (OXCYCZC) coincides with the reference
plane and the axis ZC passes through the camera center. The plane P which
is taken to pass through the origin of (OXCYCZC) is normal to the optical
axis of the projector. The Cartesian coordinate system (OXP YP ZP ) with the
plane XP OYP coinciding with the plane P and axis ZP passing through the
center of the projector system can be transformed to (OXCYCZC) by rota-
tions around the XC axis, YC axis, and ZC axis in sequence, through the
angles α, β, and γ, respectively. Mapping between the depth and the phase
difference depends on positions and orientations of the camera and projector,
fringe spacing, location of the reference plane, etc. It is important to note
that the mapping is described by the non-linear function [33]. According to

Fig. 7. Geometry of the pattern projection system. The depth (or height) of the
object point A with respect to the reference plane R is hA
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the geometry depicted in Fig. 7, the phase difference at the camera pixel
(x = iΔx, y = jΔy) is connected to the depth (or height) hij of the current
point A on the object as viewed by the camera in (x = iΔx, y = jΔy) with
respect to the reference plane R by the expression [33]:

Δϕ(x = iΔx, y = jΔy) ≡ Δϕij =
aijhij

1 + bijhij
(2)

where the coefficients aij = aij(LP , LC , d, α, β, γ) and bij = bij(LP , LC , d,
α, β, γ) depend on coordinates of point A, the rotation angles between
(OXCYCZC) and (OXP YP ZP ), fringe spacing d and distances LP and LC

of the projector and the camera, respectively, to the reference plane. If the
PMP is used for investigation of a specularly reflective surface, which acts as
a mirror, the phase of the FP recorded by the CCD is distorted proportionally
to the slope of the tested object [34]. In this simple model it is assumed that
the lateral dimensions given usually by x and y coordinates are proportional
to the image pixel index (i, j). However, this simplified model gives inaccurate
formulas in case of lens distortion and if magnification varies from point to
point, which destroys proportionality of the x and y coordinates to the image
index (i, j) [35]. Reliable conversion of the phase map to 3D coordinates needs
a unique absolute phase value. This phase value can be obtained using some
calibration mark, e.g. one or several vertical lines with known positions on
the projector at digital fringe projection. Calibration of PMP system based
on a DMD digital fringe projection is addressed in [23] where a new phase-
coordinate conversion algorithm is described. In [36] calibration is governed
by a multi-layer neural network trained by using the data about the FP’s irra-
diance and the height directional gradients obtained for the test object. In this
way, it is not necessary to know explicitly the geometry of the profilometric
system.

1.5 Error Sources

An important issue of all phase determination techniques is their accuracy
and noise tolerance. It seems logical to adopt the following general model of
the recorded signal:

I(�r, t) =Nm(�r, t) {IB(�r, t) + IV (�r, t)f [ϕ(�r, t)
+ φ(�r, t) +Nph(�r, t)]} +Na(�r, t) (3)

where the terms Nm(�r, t), Na(�r, t) and Nph(�r, t) comprise the possible deter-
ministic and random error sources. Depending on the processing algorithm
and the experimental realization of the profilometric measurement multiple
error sources of different nature will affect the accuracy of phase restoration
and henceforth, the 3-D profile recovery becomes a challenging task. Environ-
mental error sources as mechanical vibration, turbulent and laminar air flows
in the optical path, dust diffraction, parasitic fringes, ambient light, that occur
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during the acquisition of fringe data are unavoidable, being especially crucial
in the interferometric set-ups. Error sources in the measurement system as the
digitization error, low sampling rate due to insufficient resolution of the cam-
era, nonlinearity error, electronic noise, thermal or shot noise, imaging error
of the projector and the camera, the background noise, the calibration errors,
optical system aberrations, beam power fluctuations and nonuniformity, fre-
quency or temporal instability of the illuminating source, spurious reflections,
and defects of optical elements, low precision of the digital-data processing
hardware etc. occur in nearly all optical profilometric measurement systems
leading to random variations of the background and fringe visibility. Measure-
ment accuracy can be improved by taking special measures, e.g. by using a
high-resolution SLM to reduce the digitization error of the projector and by
defocusing the projected FPs or by selecting a CCD camera with a higher data
depth (10 or 12 bits versus 8 bits). To reduce the errors due to calibration,
a coordinate measuring machine can be used to provide the reference coordi-
nates and to build an error compensating map [37]. Speckle noise affects the
systems with coherent light sources [38, 39]. A special emphasis should be put
on systematic and random error sources, Nph(�r, t), that influence the mea-
sured phase. Such error sources as miscalibration of the phase-shifting device
or non-parallel illumination which causes non-equal spacing in the projected
pattern along the object introduce a non-linear phase component. Method-
ological error sources such as shadowing, discontinuous surface structure, low
surface reflectivity, or saturation of image-recording system, would produce
unreliable phase data.

Accuracy of the measurement depends on the algorithm used for phase
retrieval. For the local (pointwise) methods, the calculated output at a given
point is affected by the values registered successively at this point or at neigh-
bouring points whereas in global methods all image points affect the calculated
value at a single point. A theoretical comparison of three phase demodulation
methods in PMP in the presence of a white Gaussian noise is made in [40].

2 Phase Retrieval Methods

2.1 Phase-shifting Method

2.1.1 General Description

A typical temporal analysis method is the phase-shifting (PS) algorithm in
which, the phase value at each pixel on a data frame is computed from a series
of recorded FPs that have undergone a phase shift described by a function
φ(�r, t). If the reference phase φi, i = 1, 2, . . . ,M is kept constant during the
capture time and is changed by steps between two subsequent FPs, the method
is called phase stepping or phase shifting profilometry (PSP). In this case, to
determine the values of IB(�r), IV (�r) and ϕ(�r) at each point, at least three
FPs (N = 3) are required. In phase integration modification of the method,
the reference phase is changed linearly in time during the measurement [41].
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The PSP is well accepted in many applications due to its well-known ad-
vantages as high measurement accuracy, rapid acquisition, good performance
at low contrast and intensity variations across the FP, and possibility for de-
termination of the sign of the wave front. The PSP can ensure accuracy better
than 1/100th of the wavelength in determination of surface profiles [42]. As
in all profilometric measurements PSP operates either in a comparative mode
with a reference surface or in an absolute mode

Usually, in PSP, phase evaluation relies on sinusoidal pattern projection

I(�r, t) = I0(�r, t) + IV (�r, t) cos[ϕ(�r, t) + φ(�r, t)] (4)

Violation of the assumption f [. . .] = cos(. . .) causes systematic errors in the
evaluated phase distribution. Two approaches are broadly used in the phase-
shifting, one based on equal phase steps – typically multiples of π/2 – and
the other based on arbitrary phase steps. These two approaches are usually
referred to as a conventional and a generalized PSP [43, 44]. A modification
of the method with two successive frames shifted at known phase steps and
one frame shifted at unknown phase step is proposed in [45]. All these phase-
shifting algorithms can also be called digital heterodyning [46]. The most
general approach for phase retrieval in the PSP with M FPs shifted at known
phase-steps is the least squares technique [47, 48]. Under the assumption that
the background intensity and visibility have only pixel-to-pixel (inter-frame)
variation, in the digitized FPs

Im
ij = Bm

ij + V m
ij cos(ϕij + φm),m = 1, 2 . . .M (5)

where Bij = IB(iΔx, jΔy) and Vij = IV (iΔx, jΔy), i = 1, 2, . . . , Ny,
j = 1, 2, . . . , Nx, we have

B1
ij = B2

ij = . . . = BM
ij = Bij and V 1

ij = V 2
ij = . . . = V M

ij = Vij (6)

Assuming also that the phase steps are known, the object phase is obtained
from minimization of the least-square error between the experimental Îm

ij and
the calculated intensity distribution

Sij =
M∑

m=1

(Îm
ij − Im

ij )2 =
M∑

m=1

(Bij + aij cos φm + bij sin φm − Îm
ij )2 (7)

The unknown quantities aij = Vij cos ϕij and bij = −Vij sin ϕij are found as
the least squares solution of the Equation

Ω̂ij =
Bij

aij

bij

= Ξ̂−1
ij Ŷij (8)
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where Ξij =

M
M∑

m=1
cos φm

M∑
m=1

sin φm

M∑
m=1

cos φm

M∑
m=1

cos2 φm

M∑
m=1

(cos φm) sin φm

M∑
m=1

sin φm

M∑
m=1

(cos φm) sin φm

M∑
m=1

sin2 φm

and

Ŷij =

M∑
m=1

Im
ij

M∑
m=1

Im
ij cos φm

M∑
m=1

Im
ij sin φm

The phase estimate is obtained in each pixel as

ϕ̂ij = tan−1(−bij/aij) (9)

In the case of the so called synchronous detection the the M FPs are equally
spaced over one fringe period, φm = 2πm/M , and the matrix Ξij becomes
diagonal. More general approach is to take M equally shifted FPs and to
determine the phase from

ϕ(x, y) = tan−1

M∑
m=1

bmIm(x, y)

M∑
m=1

amIm(x, y)
(10)

The number of frames or “buckets” usually gives the name of the algorithm.
Popular algorithms are the 3-frame algorithm with a step of 120◦ or 90◦ as
well as the 4-frame algorithm and 5-frame algorithm with a step of 90◦:

ϕ̂ = arctan
I4 − I2
I1 − I3

, ϕ̂ = arctan
2(I4 − I2)

I1 − 2I3 + I5
,αi = (i− 1)

π
2

(11)

2.1.2 Accuracy of the Measurement

The choice of the number of frames depends on the desired speed of the algo-
rithm, sensitivity to phase-step errors and harmonic content of the function
f [. . .], and accuracy of the phase estimation. The errors in the phase-step,
φ(�r, t), and a nonsinusoidal waveform are the most common sources of sys-
tematic errors in the PSP [46, 49]. A nonsinusoidal signal may be caused by
the non-linear response of the detector [46].

The phase shift between two consecutive images can be created using dif-
ferent means depending on the experimental realization of the profilometric
system. Different phase-shifting devices are often subject to nonlinearity and
may not ensure good repeatability. Miscalibration of phase shifters may be
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the most significant source of error [50]. In fringe-projection applications pre-
cise linear translation stages are used [51]. In interferometric systems a phase
shifter usually is a mirror mounted on a piezoelectric transducer (PZT). In
such systems non-stability of the driving voltage, nonlinearity, temperature
linear drift and hysteresis of the PZT device and the tilt of the mirror affect
the accuracy of the measurement. In the scheme presented in Fig. 3, a special
feedback is introduced to keep constant the value of the phase-step. For large-
scale objects it is more convenient to create a phase shift by slightly changing
the wavelength of the light source. A phase-shifting system with a laser diode
(LD) source has been proposed in [52] and [53], in which the phase shift is
created by a change of the injection current of the LD in an unbalanced inter-
ferometer. The phase shift can be introduced by digitally controlling the SLM
that is used for generation of fringes. As an example, an electrically addressed
SLM (EA-SLM) is used to display a grating pattern in [42]. In [54] a DMD
microscopic system is designed in which the three colour channels in the DMD
projector are programmed to yield intensity profiles with 2π/3 phase shift. Us-
ing the colour channel switching characteristic and removing the colour filter,
the authors succeed to project grey-scale fringes and by proper synchroniza-
tion between the CCD camera and the DMD projection to perform one 3D
measurement within 10ms.

A comprehensive overview of the overall error budget of the phase-shifting
measurement is made in [55, 56]. The analysis in [57] divides the error sources
in the PSP into three groups. The first group comprises systematic errors with
a sinusoidal dependence on the measured phase as the phase-step errors and
the detector non-linearities. The second group includes random error sources
that may also cause sinusoidal ϕ-dependence of the measured phase error.
Such sources are the instability of the light source, random reference phase
fluctuations, and mechanical vibrations. The third group of errors consists of
random errors which are not correlated to the measured phase as different
noises that introduce random variation across the FP. Such noises are the
detector output and quantization noise of the measured intensity.

According to [57], the systematic phase-step error δφi = φi −
〈

φ̂i

〉
, i =

1, 2 . . .M , given by the difference between the theoretical phase step, φi, for
the i-th frame and the mean value of the phase step that is actually introduced
by the phase-shifter,

〈
φ̂i

〉
, may be presented as a series δφi = ε1φi + ε2φ

2
i +

ε3φ
3
i +. . ., with coefficients ε1, ε2, ε3, . . . that depend on the phase shifter. The

error analysis in [57] has indicated the linear and the quadratic phase step
deviations as one of the main error sources degrading the phase measurement
accuracy. If only the linear term is kept in δφi, the error induced in ϕ in all
points of the FP for most of the PS algorithms is given by [57]:

δϕ =
M∑

i=1

(
∂ϕ
∂Ii

)(
∂Ii
∂φi

)
δφi (12)
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The linear approximation (15) leads to dependence of the systematic error, δϕ,
on cos 2ϕ and sin 2ϕ [24, 58, 59, 60]. In fact, as it is shown in [57], the quadratic
and cubic terms in (12) also lead to cos 2ϕ dependence of the systematic error.
Influence of miscalibration and non-linearity of the phase-shifter for different
phase-stepping algorithms is studied in [61].

The other frequently addressed systematic error is the non-linearity caused
by the detector. To study its effect on the measured phase, [57] uses a polyno-
mial description of intensity error, δIi =

〈
Îi

〉
− Ii = α1I

2
i + α2I

3
i + α3I

4
i + . . .,

where α1, α2, α3 are constants. The detector non-linearity introduces higher
harmonics in the recorded FP. Calculations and simulation made by different
authors show that a linear approximation in δIi leads to dependence of the
phase systematic error, δϕ, on cos(Mϕ) e.g. for the four-step algorithm δϕ
depends on cos(4ϕ).

Important source of intensity error is the quantization error in video cam-
eras and frame grabbers used for data acquisition. By rounding or truncating
values in the analog-to-digital conversion the quantization changes the real
intensity values in the FP and causes an error in the phase estimate which
depends on the number of intensity levels. Quantization is a non-linear opera-
tion procedure. First quantization error analysis in PSP is made in the thesis
of Koliopoulus [62] and further developed by Brophy in [63]. Brophy [63] stud-
ies how the frame-to-frame correlations of intensity error influence the phase
error. In the absence of frame-to-frame correlation the phase variance

〈
δϕ2

〉

decreases as 1/M. Brophy assumes in the analysis that the intensity quanti-
zation error expressed in grey levels is uniformly distributed in the interval
[−0.5, 0.5]. This source of error does not exclude frame-to-frame correlation.
As a result,

〈
δϕ2

〉
may increase with the number of frames. Brophy obtains for

a Q-level quantization the formula
〈
δϕ2

〉1/2 = 1/(
√

3Q). Specific algorithms
could be designed in this case to decrease the phase variance. By introducing
a characteristic polynomial method Zhao and Surrel [64, 65] succeed to avoid
necessity to determine the inter-frame correlation of intensities in calculation
of the phase variance. For the purpose, the phase in (10) can be taken as an
argument of a linear combination

S(ϕ) =
M∑

m=1

cmIm =
1
2
IV P (ς) exp(jϕ) (13)

in which the characteristic polynomial is defined by

P (ς) =
M∑

m=1

cmςm (14)

where ς = exp(jφ), cm = am + jbm. Surrel [66] shows that error-compensating
behaviour of any phase-shifting algorithm can be determined by analyzing
location and multiplicity of the roots of P (ς). This approach permits to find
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the sensitivity of the phase-shifting algorithms also to the harmonic content
in the FP [66] and to obtain a simplified expression for the phase quantization
error. It has been obtained that for an 8-bit or more quantization, this error is
negligible for noiseless FPs, if the intensity is spread over the whole dynamic
range of the detection system. The analysis and simulations made in [67] show
that in the most common CCD cameras a nominal 6-bit range is used from
the available 8-bit range which leads to a phase error of the order of 0.178
radians. The accuracy is increased by a factor of four if a 12-bit camera is
used [67]. Algorithms with specific phase steps to minimize the errors from
miscalibration and nonsinusoidal waveforms have been derived using the char-
acteristic polynomial. It is obtained that a (j+3)-frame algorithm eliminates
the effects of linear phase-shift miscalibration and harmonic components of
the signal up to the j-th order.

Vibration as a source of error is essential in the interferometric set-ups.
For example, testing of flat surfaces needs a very high accuracy of 0.01μm.
Vibration induces blurring and random phase errors during acquisition of
the successive frames in the temporal PS. For this reason interferometric
implementation of the temporal PSP is appropriate whenever the atmo-
spheric turbulence and mechanical conditions of the interferometer remain
constant during the time required for obtaining the interferograms [31]. Anal-
ysis made in [68] shows that low frequency vibrations may cause considerable
phase error whereas high frequency vibration leads to a reduced modulation
depth [68]. In [68] a (2 + 1) algorithm is proposed in which two interfero-
grams, separated by a quarterwave step, are required to calculate the phase.
A third normalizing interferogram, averaged over two phases that differ at
180◦, makes possible to evaluate the background intensity. A thorough anal-
ysis of the vibration degrading effect is made in [69, 70]. Applying a Fourier
analysis, an analytical description of the influence of small amplitude vibra-
tions on the recorded intensity is obtained and the relationship between the
Fourier spectrum of the phase error and the vibration noise spectrum is
found by introduction of the phase-error transfer function which gives the
sensitivity of the PS measurement to different noise frequency components.
It is shown that immunity to vibration noise increases for the algorithms
with higher number of recorded patterns. A max-min scanning method for
phase determination is described in [71] and it is shown in [50] that it has
a good noise tolerance to small amplitude low-frequency and high frequency
noise.

Lower accuracy of phase demodulation and phase unwrapping should be
expected in the image zones with low fringe modulation or contrast, e.g. in
areas with low reflectivity. Fringe contrast is important characteristic for find-
ing of an optimal unwrapping path and for optimal processing of phase data
such as filtering, improving visualization, and masking [72]. However, using
of high fringe contrast as a quality criterion of a good data is not always
reliable because this feature of the FPs is insensitive to such surface structure
changes as steps. In the areas with steps which do not cast shadow the fringe
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contrast is high but phase data are unreliable. Evaluation of the fringe con-
trast from several successively recorded images is inapplicable for real-time
measurement. In [73] the fringe contrast and quality of the phase data are
evaluated from a single FP by a least-squares approach.

It is rather complicated to perform in situ monitoring of the phase step,
e.g. by incorporating additional interferometric arms. The more preferable
approach is the so-called self-calibration of the phase steps [74] which makes
use of the redundancy of the FPs. Some of the developed self-calibrating
algorithms are pointwise whereas others take into account the information
contained by the whole FP. However, most of the developed self-calibration
methods put restrictions on the number and quality of the FPs and on the
performance of the phase shifters.

Over the years, different approaches for deriving error-compensating algo-
rithms have been proposed [49, 75]. Hibino [49] divides the PS algorithms into
three categories according to their ability to compensate systematic phase-step
errors. The first group comprises algorithms without immunity to system-
atic phase-step error, e.g. the synchronous detection algorithm. The second
group consists of the error-compensating algorithms able to eliminate linear
or nonlinear phase-step errors. The third group of algorithms compensate for
systematic phase-step errors in the presence of harmonic components of the
signal. To justify the compensating properties of the proposed algorithms dif-
ferent approaches have been invented as averaging of successive samples [76],
a Fourier description of the sampling functions [77], an analytical expansion
of the phase error [57] etc.

Currently, the five-frame algorithm proposed by Schwider–Hariharan [78]
becomes very popular. Hariharan et al. show that the error of the five-frame
algorithm has a quadratic dependence on the phase step error. A new four in-
terferogram method for compensating linear deviations from the phase step is
developed in [79]. To increase the accuracy, algorithms based on more frames
start to appear [76]. Algorithms derived in [80] based on seven or more camera
frames prove to have low vulnerability to some phase-step errors and to low-
frequency mechanical vibration. In [81] three new algorithms are built with
π/2 phase steps based on the Surrel [82] six-frame algorithm with a π/2 step,
and four modifications of the conventional four-frame algorithm with a phase
step of π/2 are studied using a polynomial model for the phase-step error.
The ability to compensate errors is analyzed by the Fourier spectra analysing
method. The main conclusion of the analysis is that it is possible to improve
performance of π/2 algorithms by appropriate averaging technique. A self-
calibrating algorithm proposed in [83] relies on the assumption of constant
arbitrary phase-steps between the consecutive FPs and quasi-uniform distri-
bution of the measured phase taken modulo 2π in the range (0, 2π) over the
recorded FP. When the phase steps differ from the actual ones, the probability
density distribution of the retrieved phase is no longer uniform and exhibits
two maxima. Applying of an iterative fitting procedure to a histogram built
for the retrieved phase permits to find the actual phase steps and to correct
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the demodulated phase. The algorithm is further improved in [84] where the
visibility of fringes across the FP is assumed to be constant whereas the back-
ground is allowed to have only intraframe variations. The improved algorithm
introduces a feedback to adjust the supposed phase shifts until the calculated
visibility map becomes uniform. The merit of the algorithm is its operation at
arbitrary phase steps, however at the expense of constant visibity requiriment.

A general approach to diminish or eliminate some error sources in PS
interferometry is proposed in [85]. A model for Nph(�r, t) is built which takes
in account the phase-step error and considers an interferomer with a spherical
Fizeau cavity. A generic algorithm for elimination of the mechanical vibration
during the measurement is also described. Reference [77] adopts Fourier-based
analysis to determine suitable sampling functions for the design of a five-frame
PS algorithm that is insensitive to background variation when a laser diode is
used as a phase shifter. Criteria are defined to check algorithm vulnerability
to the background change. In addition, the authors evaluate the influence of
the linear phase-shift miscalibration and the quadratic non-linearity of the
detector error. An accurate method for estimation of the phase step between
consecutive FPs is proposed in [51] for the case of five frame algorithm with an
unknown but constant phase step, which permits to calculate the phase step
as a function of coordinates and to use the so called lattice-site representation
of the phase angles. In this representation the distance of the corresponding
lattice site to the origin depends on the phase step. In the ideal case all lattice
sites that correspond to a given phase step but to different phases lie on a
straight line passing through the origin of the coordinate system whose both
axes represent the numerator and denominator in the equation for phase step
calculation [78]. The error sources deform somehow shape and spread of both
histogram and lattice-site representation patterns. Application of the latter
to analysis of behaviour of four and five frame algorithms is made in [86].
It is proven that the lattice-site representation outperforms the histogram
approach for detection of errors in the experimental data.

A phase shifter in an interferometric setup is vulnerable to both transla-
tional and tilt-shift errors during shifting, which results in a different phase-
step value in every pixel of the same interferogram. An iterative algorithm
that compensates both translational- and tilt-shift errors is developed in [87]
which is based on the fact that the 2D phase distribution introduced by the
phase-shifter is a plane. This plane can be determined by a first-order Taylor
series expansion that makes possible to transform the nonlinear equations for
defining the phase-shift plane into linear ones. By using an iterative procedure
both errors can be minimized. A liquid-crystal SLM may produce nonlinear
and spatially nonuniform phase shift [75].

2.1.3 Generalized Phase-shifting Technique

In the conventional phase-shifting algorithms the phase steps are known and
uniformly spaced. In this case simple trigonometry permits derivation of
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explicit formulas for the object phase calculation. It is also assumed that
the background and visibility of fringes have only pixel-to-pixel variation but
remain constant from frame to frame. In the generalized PSP, which in recent
years gains increasing popularity because of the advantage to use arbitrary
phase steps, these steps are unknown and should be determined from the
recorded FPs. It is a frequently solved task in the PSP, e.g. for calibration of
the phase-shifter.

Determination of the phase-step between two consecutive interferograms is
similar to the signal-frequency estimation, which has attracted a lot of atten-
tion in the signal-processing literature. However, it is more complicated due to
the fact that the background intensity (the dc component) is involved in the
processed signal [88]. Determination of the phase step is equivalent to the task
of the phase-step calibration which, generally speaking, can be performed by
using two approaches: fringe tracking or calculation of the phase-step from the
recorded FPs [89]. In the fringe tracking the size of the phase step is obtained
from the displacement of fringes following some characteristic features of the
fringes, e.g. positions of their extrema after performing fringe skeletonizing to
find the centers of dark or bright interference lines [79]. An extensive overview
of algorithms for determination of unknown phase steps from the recorded
FPs is made in [90]. Phase step determination in a perturbing environment
is analyzed in [91]. Several methods as Fourier series method, iterative linear
and non-linear least squares methods are compared on the basis of computer
simulations which prove the reliability of all of them for the derivation of the
phase step.

Historically, development of self-calibrating algorithms starts with the first
phase-stepping algorithm proposed by Carré in 1966 [92]. The algorithm is de-
signed to operate at an arbitrary phase step, φ, which is determined during the
processing under assumption of linear phase step errors. It requires four phase-
shifted images Ii = I0 + IV cos[ϕ + (i− 1.5)φ], i = 0, . . . , 3 under assumption
of the same background intensity, modulation, and phase step for all recorded
images.The Carré algorithm accuracy is dependent on the phase step. Carré
recommends the value of 110 degrees as most suitable. The accuracy of the al-
gorithm has been studied both theoretically [57] and by computer simulations
[55] for the phase step π/2. Computer simulations and experiments performed
in [79] for the case of white additive noise and Fourier analysis made in [93]
confirm the conclusion of Carré that highest accuracy is observed at 110 deg.
In [94] search for the best step that minimize the error of the Carré algorithm
is made by means of linear approximation of Tailor series expansion of the
phase error. Linear approximation yields correct results only in the case of
small error expansion coefficients. The obtained results also indicate φ = 110◦

as the best choice but only when the random intensity fluctuations (additive
noise) are to be minimized. This value is not recommendable for compensa-
tion of a phase step error or a systematic intensity error. The authors draw
attention to the fact that the numerator in the Carré algorithm should be
positive which is fulfilled only for perfect images without noise. A number
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of other algorithms with a fixed number of equal unknown phase steps have
been recently proposed in [95, 96, 97]. Use of a fixed number of equal steps
is certainly a weak point in the measurement practice. This explains the urge
of the phase-shifting community to elaborate more sophisticated algorithms
with randomly distributed arbitrary unknown phase steps.

Direct real time evaluation of a random phase step in the generalized PS
profilometry without calibration of the phase-shifter is realized in [98] where
the phase step is calculated using a Fourier transform of straight Fizeau fringes
that are simultaneously generated in the same interferometric set-up. The
necessity to have an additional optical set-up puts limitation on the method
application. Evaluation of the phase steps by Lissajous figure technique is
described in [99, 100]. The phase is determined by ellipse fitting based on
Bookstein algorithm of a Lissajous figure obtained if two phase-shifted fringe
profiles are plotted against each other. The algorithm, however, is sensitive to
noise and easily affected by low modulation of the FP. Some improvement of
the algorithm is proposed in [100] where the Lissajous figures and elliptic serial
least-squares fitting are used to calculate the object phase distribution. The
algorithm has both immunity to errors in φ and possibility for its automatic
calibration.

Reduction of phase error caused by linear and quadratic deviations of the
phase step by means of a self-calibrating algorithm is proposed in [59]. The
estimates of the phase steps are derived from each FP, and the exact phase
difference between the consecutive patterns is calculated. Numerical simula-
tion proves the efficiency of the algorithm up to 10% linear and 1% quadratic
phase deviations and by experiments with a Twyman–Green interferometer
for gauge calibration. Phase-calibration algorithm for phase steps less than π
that uses only two normalized FPs is proposed in [101]. For the purpose, a
region that concises a full fringe (region with the object phase variation of
at least 2π) is chosen. The phase step is retrieved by simple trigonometry. A
method for evaluation of irregular and unknown phase steps is described in
[102] based on introduction of the carrier frequency in the FPs. The phase
steps are determined from the phases of the first-order maximum in the spec-
tra of the recorded phase-shifted FPs in the Fourier domain. The Fourier
analysis can be applied to a subregion of the FP with high quality of the
fringes. This straightforward and simple method works well only in the case
of FPs with narrow spectra. Algorithms that exploit a spatial carrier use a
relatively small number of interferograms. Improvement of the Fourier trans-
form method based on the whole-field data analysis is proposed in [103]. The
phase-step is obtained by minimization of the total energy of the first-order
spectrum of the difference of two consecutive FPs with one of them multiplied
by a factor of exp(jφ) where φ is equal to the estimated value of the phase
step to be determined. Simulations and experiments prove that the algorithm
is effective, robust against noise, and easy to implement. Based on quadrature
filter approach, Marroquin et al. propose in [104] an iterative fitting tech-
nique that simultaneously yields the phase steps and the object phase, which
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is assumed to be smooth. In [89] a method is proposed that requires only
two phase-stepped images. The phase step is estimated as an arccosine from
the correlation coefficient of both images without requirement for constant
visibility and background intensity. The method can show position-dependent
phase-step differences, but it is strictly applicable only to areas with a linear
phase change.

To overcome the errors induced in the phase step by different sources it is
desirable to develop a pointwise algorithm that can compute the phase step
and the object phase at each pixel [105]. The first attempt to deduce an algo-
rithm with unknown phase steps using the least-squares approach belongs to
Okada et al. [106]. Soon it is followed by several proposals of self-calibrating
least-squares PS algorithms [45, 107, 108, 109]. The essence of the least-squares
approach is to consider both phase steps and object phase as unknowns and to
evaluate them by an iterative procedure. This approach is especially reliable
for FPs without spatial carrier fringes presenting stable performance in the
case of nonlinear and random errors in the phase step. The number of equa-
tions which can be constructed from M FPs each consisting of Nx×Ny pixels
is 3M ×Nx ×Ny whereas the number of unknowns is 3Nx ×Ny +M −1. This
entails the requirement 3M×Nx×Ny ≥ 3Nx×Ny+M−1 to ensure the object
phase retrieval. To have stable convergence the least-squares PS algorithms
with unknown phase steps need comparatively uniformly spaced initial phase
steps that are close to the actual ones. These algorithms usually are effective
only at small phase-step errors and require long computational time. They
are not able to handle completely random phase-steps. As a rule, these meth-
ods are either subject to significant computational burden or require at least
five FPs for reliable estimation. The least-squares approach is accelerated in
[109, 110] where a computationally extensive pixel-by-pixel calculation of the
phase step estimate is replaced with a 2 × 2 matrix equation for cos φ and
sin φ. The phase step is determined iteratively as φ̂ = tan−1(sin φ/ cos φ) until
the difference between two consecutive phase step estimates falls down below
a predetermined small value. The limitations of the least squares approach
are overcome by an advanced iterative algorithm proposed in [111] and [112]
which consists of the following consecutive steps:

i) Using a least-squares approach, the object phase is estimated in each pixel
under assumption of known phase steps and intraframe (pixel-to-pixel)
variations of the background intensity and visibility.

ii) Using the extracted phase distribution, the phase steps φn = tan−1(−dn/cn)
are updated by minimization of the least-square error.

Sn =
Nx∑

i=1

Ny∑

j=1

(În
ij −In

ij)
2 =

Nx∑

i=1

Ny∑

j=1

(Bn +cn cos ϕij +dn sin ϕij − În
ij)

2 (15)

under assumption of interframe (frame-to-frame) variations of the back-
ground intensity and visibility, Bn

ij = Bn and V n
ij = V n, with cn =

V n cos φn and dn = −V n sin φn.
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iii) If the pre-defined converging criteria are not fulfilled the steps i) and ii)
are repeated.

An improved iterative least-squares algorithm is constructed in [108] which
minimizes the dependence of differences between the recorded intensities and
their recalculated values with respect of the phase step errors. An iterative
approach is considered in [113] where the phase steps are estimated by mod-
elling of an interframe intensity correlation matrix using the measured FPs.
This makes the method faster, more accurate and less dependent on the qual-
ity of the FPs. The smallest eigenvalue of this matrix yields the random error
of intensity measurement. As few as four FPs are required for phase-steps
estimation. The developed iterative procedure is rather simplified in compar-
ison with the methods that rely on pixel-to-pixel calculation. The accuracy of
2× 10−3 rad has been achieved. A pointwise iterative approach for the phase
step determination based on linear predictive property and least squares min-
imization of a special unbiased error function is proposed in [88]. The algo-
rithm works well only for a purely sinusoidal profile of the FP. Phase retrieval
and simultaneous reconstruction of the object wave front in PS holographic
interferometry with arbitrary unknown phase steps is proposed in [107]. As-
suming uniform spatial distribution of the phase step over the recorded inter-
ferogram, the authors obtain the following relationship between consecutive
interferograms

pn =
〈∣∣∣∣
In+1 − In

4
√
I0Ir

∣∣∣∣

〉
=

2
π

sin
φn+1 − φn

2
(16)

where I0 and Ir are the intensities of the object and the reference waves. The
parameter pn can be determined for all recorded interferograms which further
permits to restore the complex amplitude of the object wave. The process is
repeated iteratively until the difference φn+1 − φn becomes less than a small
predetermined value. The algorithm is proved to work well for any number
of patterns M > 3 by computer simulations. Extension of the algorithm is
proposed in [114] for the case when only the intensity of the reference beam
must be measured. The need of iterations, however, makes it unsuitable for
real-time measurement as the authors recommend at least 20 iterations in
1 min to reach the desired high accuracy. To avoid iterations and the need
of alternative estimation of the object phase and the phase step, Qian et.al.
[115] propose to apply a windowed Fourier transform to a local area with
carrier-like fringes in two consecutive FPs.

The objective of [43] is to develop a generalized PS interferometry with
multiple PZTs in the optical configuration that operates under illumination
with a spherical beam in the presence of higher harmonics and white Gaus-
sian intensity noise. These goals are achieved by a super-resolution frequency
estimation approach in which Z-transform is applied to the phase-shifted FPs,
and their images in the Z-domain are multiplied by a polynomial called an
annihilating filter. The zeros of this filter in the Z-domain should coincide
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with the frequencies in the fringes. Hence, the parametric estimation of the
annihilating filter provides the desired information about the phase steps. Pix-
elwise estimation of arbitrary phase steps from an interference signal buried
in noise in the presence of nonsinusoidal waveforms by rotational invariance
is proposed in [105]. First, a positive semidefinite autocorrelation matrix is
built from the M phase-shifted records at each pixel (i, j) which depends only
on the step between the samples. The signal is separated from the noise by
a canonical decomposition to positive definite Toeplitz matrices formed from
the autocorrelation estimates. The phase steps are determined as frequency
estimates from the eigen decomposition of the signal autocorrelation matri-
ces. The exact number of harmonics in the signal is required. The method is
extended to retrieve two distinct phase distributions in the presence of higher
harmonics and arbitrary phase-steps introduced by multiple PZTs [116]. In
[117] the problem of using two or more PZTs in the PS interferometry with
arbitrary phase steps in the presence of random noise is solved by maximum-
likelihood approach. The developed algorithm should allow for compensation
of non-sinusoidal wavefront and for non-collimated illumination.

2.1.4 Phase Unwrapping

As it has been already mentioned, the presence of the inverse trigonometric
function arctg in the PS algorithms introduces ambiguity in the measured
phase distribution. The calculated phase is wrapped into the interval of (−π;
+π). The process of removing 2π crossovers (unwrapping) could simply be
described as subtracting or adding 2π multiples to the wrapped phase data
[118] that is equivalent to assign the fringe order at each point:

ϕunw(i, j) = ϕwr(i, j) + 2πk(i, j), (17)

where ϕunw(i, j) is the unwrapped phase at the pixel (i, j), ϕwr(i, j) is the
experimentally obtained wrapped phase at the same point, and k(i, j) is an
integer, that counts 2π crossovers from a starting point with a known phase
value to the point (i, j) along a continuous path. Therefore, the phase un-
wrapping problem is a problem of estimation of the correct value of k(i, j) in
order to reconstruct the initial true signal [119].

The described unwrapping procedure performs well only in the case of a
noise-free, correctly sampled FP, without abrupt phase changes due to object
discontinuities [120]. The basic error sources that deteriorate the unwrapping
process are i) speckle noise, ii) digitalization and electronic noise in the sam-
pled intensity value, iii) areas of low or null fringe visibility, and iv) violation
of the sampling theorem [44, 120, 121]. In addition, the phase unwrapping al-
gorithms should distinguish between authentic phase discontinuities and those
caused by object peculiarity, coalescence [122], shadowing or non-informative
zones due to limited detector visibility range. Over the years a lot of research
is aimed to develop different unwrapping techniques [123], which should find
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the middle ground between alleviation of the computational burden and re-
duction of influence of the phase ambiguities [124]. One of the major problems
in the phase unwrapping is how to estimate the unreliable data that may dis-
turb actual data restoration. The principal categorization of algorithms that
attack the major error sources is proposed in [125, 126], where three basic
classes are outlined:

i) Global class. In global class algorithms the solution is formulated in
terms of minimization of a global function. The most popular phase un-
wrapping approaches [125, 127, 128, 129, 130, 131, 132] are based on
solution of a unweighted or weighted least-squares problem [123, 133]. All
the algorithms in this class are known to be robust but computationally
intensive. The presence of noise and other fringe discontinuities, however,
leads to corrupted results because of the generalized least square approach
applied. To overcome this disadvantage, a time-consuming post-processing
should be utilized [126].

ii) Region class. An essential feature of these algorithms is subdivision of
wrapped data in regions. Each region is processed individually and on
this basis larger regions are formed till all wrapped phase values are pro-
cessed. This restricts the local errors only to the processed zone of the
FP preventing their propagation into the other regions. There are two
groups of region algorithms: 1) Tile-based and 2) Region-based. In tile-
based approach [134, 135] the phase map is divided into grid of small
tiles, unwrapped independently by line-by-line scanning techniques and
after that the regions are joined together. However, this algorithm is not
successful in processing of very noisy data. The region-based approach,
proposed initially by Geldorf [136] and upgraded by other researchers
[119, 128, 137, 138, 139, 140] relies on forming uniform regions of contin-
uous phase. A comparison of a pixel to its neighbour is performed. If the
phase difference is within a predefined value, then the pixel and its neigh-
bour are attached to the same region; otherwise, they belong to different
regions. After that the regions are shifted with respect to each other to
eliminate the phase discontinuities.

iii) Path following class, in which data unwrapping is performed us-
ing an integration path. The class of path-following algorithms can be
subclassified into three groups: 1) Path-dependant methods; 2) Residue-
compensation methods and 3) Quality guided path methods. The first group
is characterized with phase integration on preliminary defined path (i.e.
linear scanning, spiral scanning, multiple scan direction [141]); the sim-
plest example of this type is proposed by Schafer and Oppenheim’s [142].
Despite of their benefit to be low-time consuming, these methods are not
reliable at the presence of noise and other error sources due to the fixed
integration path. The residue-compensation methods rely on finding the
nearest residues (defined as unreliable phase data) and connect them in
pairs of opposite polarity by a branch-cut [143]. Uncompensated residues
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could be connected also to the image border pixels. The unwrapped pro-
cedure is realized without crossing any branch-cut placed, limiting the
possible integration paths. Other similar approaches [144, 145] are also
based on branch-cuts unwrapping strategy. These methods produce fast
results, but an inappropriately placed branch-cut could lead to isolation of
some phase zones and discontinuous phase reconstruction. Quality-guided
path following algorithms initially unwrap the most reliable data, while
the lowest reliable data are passed up in order to avoid error spreading.
The choice of integration path depends on pixels quality in the meaning
of quality map, first proposed by Bone [146], who uses a second differ-
ence as a criterion for data reliability, setting up a threshold, and the all
phase data with calculated second derivatives under it are unwrapped in
any order. The method is improved [147, 148] by introducing an adaptive
threshold with increasing threshold value whose implementation allows
all data to be processed. However, when reliable quality map is not pre-
sented, the method fails in phase restoration. The accuracy of the pro-
duced quality map assures successful performance of the method [149]
with different type of phase quality estimators, such as correlation coef-
ficients [123, 150] phase derivatives variance [151, 152] or fringe modula-
tion [77, 153]. For illustration of some of the discussed phase unwrapping
methods we processed the wrapped phase map (Fig. 8) of two real ob-
jects – plane and complicated relief surface, experimentally produced by
two-spacing projection PS interferometry [5]. The results are shown in
Fig. 9.

Goldstein algorithm (Fig. 9a) identifies the low quality phase values, but
does not create correct branch-cuts. The main advantage of this algorithm
is minimization of the branch-cut length, thus allowing for fast data process-
ing. However, this approach is not efficient in the case of phase maps with
sharp discontinuities. The same bad result is observed when implementing

Fig. 8. Wrapped phase map of a test (left) and a real (right) object
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Fig. 9. Unwrapped phase map for a) Goldstein method, b) mask-cut method,
c) minimum Lp – norm method, d) weighted multigrid method, e) conjugated gra-
dient method, f) least-squares method, g) quality-guided path following method and
h) Flynn method

Mask-cut algorithm (Fig. 9b) that upgrades the Goldstein method with intro-
ducing quality map to guide the branch-cut placement. In comparison with
Goldstein method, the incorrect interpretation of phase data could be due to
low accuracy of the quality map. The phase unwrapping using all four mini-
mum norm methods fails (Fig. 9) in the case of complex phase map with low
quality noisy regions and discontinuities. A possible reason is the absence of
a good quality map. Increasing the number of iterations improves the quality
of the demodulated phase but at the expense of longer computational time.
Quality-guided path following method (Fig. 9g) successfully demodulates the
processed phase map. The regions with bad quality values (due to noise and
shadowing) are recognized due to implementation of quality map that guides
the integrating path. The algorithm is fast and successfully presents the small
details that make it suitable for processing of complex phase maps. Flynn
method (Fig. 9h) also provides phase reconstruction by effectively identifying
phase discontinuities as a result of its main benefit – to perform well without
an accurate phase map. However, in comparison with Quality-guided path
following method it has poorer presentation of details and flat surfaces and is
more time consuming.

Involvement of arctan function in phase retrieval is an obstacle in achieving
the two main goals of the PMP: high measurement accuracy and unambiguous
full-filed measurement. Among the solutions of this problem there is the
so-called temporal-phase unwrapping method [154, 155] which makes pixel-by-
pixel unwrapping along the time coordinate by projection of a proper number
of FPs at different frequencies. Thus propagation of the unwrapping error to
the neighbouring pixels is avoided. The first projected pattern in the temporal
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sequence consists of a single fringe, and the phase changes from −π to +π
across the field of view [156]. If the number of fringes increases at subsequent
time values as n = 2, 3 . . . , N , so the phase range increases as (−nπ, nπ). For
each n, M phase-shifted FPs are recorded. Therefore, the measured inten-
sity depends on pixel coordinates, current number of fringes and number of
the phase-shifted patterns. Analysis made in [44, 157] shows that the error in
depth determination scales asN−1 toN−3/2. Obviously, temporal unwrapping
is suitable to applications when the goal is to derive the phase difference. Mod-
ifications of the original scheme have been tested aiming to reduction of the
used FPs. As an example, in [158] two sinusoidal gratings with different spac-
ings are used for fringe projection. The grating with higher spatial frequency
ensures the sensitivity of the measurement while the coarse grating creates
a reference pattern in the phase unwrapping procedure. Projection of tilted
grids for determination of the absolute coordinates is proposed in [159]. In [20]
a SLM is used to project fringes for surface contouring with a time-varying
spatial frequency, e.g. linearly increasing, and by temporal unwrapping the
3D coordinates are restored pixel by pixel. In [157] an exponential increase of
the spatial frequency of fringes is used which enhances the unwrapping relia-
bility and reduces the time for data acquisition and phase demodulation. In
[160] temporal unwrapping is combined with digital holography. The method
requires a time-coded projection which is a serious limitation. This limita-
tion is overcome in [161], where the authors propose projection of a single
FP obtained by merging two sinusoidal gratings with two different spacings
1 /f1 > 1/ f2. The following FP is recorded:

I(x, y) = IB(x, y) + I1(x, y) + I2(x, y) =

= IB(x, y) + I1
V (x, y) cos[2πf1x+ ϕ(x, y)]

+I2
V (x, y) cos[2πf2x+ ϕ(x, y)]

(18)

Two phase maps ϕ1,2(x, y) are derived from the components I1,2(x, y) that are
isolated from the registered FP and multiplied by the signals cos(2πf1,2x) and
sin(2πf1,2x) respectively. Due to the relation, f1ϕ2(x, y) = f2ϕ1(x, y), higher
sensitivity is achieved, at least within non-ambiguity interval of ϕ1(x, y). In
[162] two Ronchi gratings of slightly different spacings are used for fringe
generation. The small difference in spacings is a ground to conclude that at a
given point (x, y) both ϕ1,2(x, y) and their difference are monotone functions of
the object depth or height, h. This allows for coarse and fine estimation of h. A
multifrequency spatial-carrier fringe projection system is proposed in [22]. The
system is based on two-wavelength lateral shearing interferometry and varies
the spatial-carrier frequency of the fringes either by changing the wavelength
of the laser light or by slight defocusing. In [163] a white-light Michelson
interferometer produces the varying pitch gratings of different wavelengths
which are captured and separated by a colour video camera using red, green
and blue channels. Parallel and absolute measurement of surface profile with
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a wavelength scanning interferometry is given in [32]. By using Michelson
and Fizeau interferometer the authors report measuring objects with steps
and narrow dips. The multiwavelength contouring for objects with steps and
discontinuities is further improved in [164] by an optimizing procedure for
determination of the minimum number of wavelengths that are necessary for
phase demodulation. A pair of coarse and fine phase diffraction gratings is used
for simultaneous illumination at two angles of an object in a PS interferometric
system for flatness testing. The synthetic wavelength is 12.5mm, and a height
resolution of 0.01mm is achieved.

A PS approach without phase unwrapping is described in [165]. It includes
calculation of the partial derivatives to build a 2D map of the phase gradi-
ent and numerical integration to find the phase map. The method proves
to be less sensitive to phase step errors and does not depend on the spatial
nonuniformity of the illuminating beam and on the shape of the FP boundary.
Projection of a periodic sawtoothlike light structure and the PS approach are
combined in [166]. Projection of such a pattern is simpler in comparison with
the sinusoidal profile. The phase demodulation procedures are described for
right-angle triangle teeth and isosceles triangle teeth. The method requires
uniform reflectivity of the surface. The recommendable φ is half the period of
the projected pattern.

2.2 Absolute Coordinates Determination

Projecting of two FPs with different spatial frequencies can be used for mea-
surement of 3D coordinates as is proposed in [167]. The method is based on
the generation in the (x′, y′, 0) plane of fringes with spacings d1 and d2 that
are parallel to the y′ axis (Fig. 10). The y and y′ axes are perpendicular to
the plane of the drawing. The phase of the projected fringes is determined
as ϕ′

i = 2πx′/di, i = 1, 2. The phase is reconstructed in the xyz coordinate

Fig. 10. Basic set-up for absolute coordinates determination
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system, with the z axis oriented parallelly to the optical axis of the CCD cam-
era. Angle α is the inclination angle of the illumination axis z′ with respect
to the observation axis z. The phase maps are determined by the five-step
algorithm for each of the spacings. The smaller of the spacings is chosen to
allow ten pixels per fringe period. The phase Δϕi(x, y) can be represented in
the xyz coordinate system as

Δϕi(x, y) = ϕi(x, y) − ϕ0 =
2π
di

· lx cos α + lz(x, y) sin α
l − z(x, y) cos α + x sin α

− ϕ0, (19)

where i = 1, 2; z(x, y) is the relief of the object at point (x, y), l is the distance
from the object to the exit pupil of the illumination objective, and ϕ0 is an
unknown calibration constant. Subtracting the obtained phase distributions
and assuming, Δϕ2(x, y) − Δϕ1(x, y) = 2πnx,y, we obtain the expression for
the coordinate z in the form

z(x, y) =
nx,y(1 + x sinα) + χlx cosα

nx,y cosα− χl sinα
, χ =

d2 − d1

d1d2
(20)

The vertical interference fringes, generated with a collimated laser light and a
Michelson’s interferometer (one mirror is mounted on a phase-stepping device)
are projected on the plane (x′, y′,0). Different spacings of interference patterns
are used for successive illumination of the object surface (d1 = 1 mm, d2 = 2
and 6 mm). The angle α of the object illumination is 30 deg. The wrapped
phase maps at different spacings of the projected FPs are presented in Fig. 11.
Figure 12 gives the 3D reconstruction of the object. The method’s sensitivity
mainly depends on the accuracy with which the phase difference is measured,
i.e., on the accuracy of nx,y estimation. The influence of inaccuracy in deter-
mining l and α can be neglected. The measurement accuracy increases with
the difference (d1 − d2) and with the illumination angle α but is not uniform
over the length of the object and decreases as its transverse size increases.

It is interesting to compare the obtained result to the two-wavelength
holographic contouring of the same object, presented in [168, 169]. In recon-
struction with a single wavelength of the two-wavelength recorded hologram

Fig. 11. Phase maps obtained for different spacings of the projected interference
patterns after median filtration and low-quality zones detection; left) d1 = 1mm,
d2 = 2mm; right) d1 = 1 mm, d2 = 6 mm
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Fig. 12. Reconstructed 3D image from the difference phase map

the object’s image is modulated as a result of interference of the two recon-
structed images by sinusoidal contouring fringes in normal direction sepa-
rated at distance Δz which depends on both recording wavelengths and the
angle between the reference and the object beam (surface normal). A ten
mW CW generating temperature stabilized diode laser, emitting two shifted
at Δλ ∼ 0.08 nm wavelengths in the red spectral region (∼ 635 nm) is used
for recording of a single exposure reflection (Denisyuk’s type) hologram onto
silver-halide light-sensitive material. The illumination angle is 30 deg. The
image reconstructed in white light is shown in Fig. 13. The step between the
contouring fringes is Δz = 1.83 mm.

2.3 Fourier Transform Method

2.3.1 Basic Principle and Limitations

The most common and simple way for phase demodulation from a single FP
is to use Fourier transform for analysis of the fringes. Almost three decades of
intensive research and application make the Fourier transform based technique
a well established method in holography, interferometry and fringe projection
profilometry. In two works [170, 171] published within an year in 1982 and 1983
by Takeda and co-workers, it is shown that 1D version of the Fourier transform
method can be applied both to interferometry [170] and PPP [171]. Soon after
that, the method gains popularity under the name of Fourier fringe analysis
(FFA) [172, 173, 174, 175, 176]. For the 3D shape measurement the method
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Fig. 13. Reconstructed image in white light illumination of reflection hologram

becomes known as Fourier transform profilometry (FTP). The FTP surpasses
in sensitivity and avoids all the drawbacks exhibited by the previously existing
conventional moiré technique used for 3D shape measurement as the need to
assign the fringe order, poor resolution, and the incapability of discerning
concave or convex surfaces [177, 178]. The computer-aided FFA is capable
to register a shape variation that is much less than one contour fringe in
moiré topography [171]. Some years later, the 1D Fourier transform method
is extended to process 2D patterns – firstly by applying 1D transform to
carrier fringes parallel to one of the coordinate axes [179, 180] and further by
generalization of the method to two dimensions [175]. Actually, as has been
reported in [174], the algorithm proposed in [175] has been in use since 1976
for processing of stellar interferograms. The ability of FFA for fully automatic
distinction between a depression and an elevation in the object shape put the
ground for automated processing in the FTP [171].

The main idea of the FFA is to add a linearily varying phase into the FP,
i.e. to use in (1) φ(�r) = 2π�f0 · �r, which can be done e.g. by tilting one of the
mirrors in the interferometric setup or by using a diffraction grating for fringe
projection. Obviously, the introduction of the carrier frequency �f0 = (f0x, foy)
is equivalent to adding a plane in the phase space, as it is shown in Fig. 14.
The expression for the recorded intensity becomes:
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Fig. 14. Left: pattern with open fringes; middle: 3D presentation of the phase
map without carrier removal; right: pattern with closed fringes

I(�r) = IB(�r) + IV (�r)f [ϕ(�r) + 2π�f · �r0]
= IB(�r) + IV (�r)

∞∑
p=1

Ap cos
{
p
[
ϕ(�r) + 2π�f · �r0

]} (21)

where the dependence on time variable, t, is omitted since we consider the
case of phase retrieval from a single FP. The purpose of carrier frequency
introduction is to create a FP with open fringes in which the phase change
is monotonic (Fig. 14). The further processing of (21) is straightforward and
includes the steps:

i) Fourier transform of the carrier frequency FP that is modulated by the
object

D(�f) = DB(�f) +
∞∑

p = −∞
p 	= 0

Dp(�f − p�f0) (22)

with Dp(�f) = F
{

1
2IV (�r)Ape

jpϕ(�r)
}

and DB(fx, fy) = F{IB(x, y)}, where
F{. . .} denotes Fourier transform and �f = (fx, fy) is the spatial frequency;

ii) selection of the fundamental spectrum that corresponds to one of the two
first diffraction orders, D1(�f − �f0) or D1(�f + �f0), by proper asymmetric
bandpass filtering;

iii) removal of the carrier frequency D1(�f − �f0) → D1(�f);
iv) inverse Fourier transform back to the spatial domain F−1{D1(�f)};
v) extraction of the phase information from the resulting complex signal

Ψ(�r) = 1
2IV (�r)A1(�r)ejpϕ(�r) in the spatial domain, whose argument is the

searched phase:

ϕ(�r) = tan−1 Im[Ψ(�r)]
Re[Ψ(�r)]

(23)

As is seen, introduction of the carrier frequency separates in the Fourier
domain both counterparts of the fundamental spectrum from each other and
from the background intensity contribution concentrated around the zero-
frequency (Fig. 15). Due to the global character of the Fourier transform, the
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Fig. 15. Schematic of the Fourier fringe analysis

phase estimate calculated at an arbitrary pixel depends on the whole recorded
FP. This means that any part of the pattern influences all other parts and
vice versa. The successive steps of the FFA are illustrated in Fig. 16. Similar
to the PS technique, the FFA returns a phase value modulo 2π and needs fur-
ther unwrapping. As it can be seen from (23), the phase is restored without
the influence of the terms IB(x, y) and IV (x, y). This means that the Fourier
algorithm is not vulnerable to the noise sources that create IB(x, y) as e.g.
stray light from the laboratory environment, unequal intensities in the two
arms of interferometer or the dark signal from the imaging system, as well
as to the noise contribution in IV (x, y) as e.g. nonuniform intensity distri-
bution of the illuminating beam, optical noise or nonuniform response of the
CCD [181].

In most cases, the higher harmonics content is ignored, and the recorded
pattern with open fringes looks like [173]:

I(x, y) =IB(x, y) + Ψ(x, y) exp[2πj(f0xx+ f0yy)]
+ Ψ∗(x, y) exp[−2πj(f0xx+ f0yy)] (24)

Fig. 16. Single frame phase retrieval with FFA
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The 2D Fourier transform of (24) can be written in the form:

D(fx, fy) = DB(fx, fy)+D1(fx−f0x, fy −f0y)+D∗
1(fx +f0x, fy +f0y) (25)

where the asterisk represents the complex conjugate. If the background, the
visibility and the phase vary slow in comparison to (f0x, f0y), the amplitude
spectrum is a trimodal function with a broadened zero peak DB(fx, fy) and
D1 and D∗

1 placed symmetrically to the origin. In this case, the three parts
of the spectrum in (25) can be well isolated from each other. A 2D bandpass
filter centered at (f0x, f0y) extracts a single spectrum D1(fx − f0x, fy − f0y)
which is shifted to the origin in the frequency domain (Fig. 15). The amplitude
of the zero-order spectrum at each point in the frequency domain exceeds at
least twice the amplitudes of the first orders, which restricts the size of the
filter window to remain, roughly speaking, less than halfway between zero-
and first-order maxima. If after the filtering D1(fx − f0x, fy − f0y) remains
where it is, a tilt is introduced in the restored height distribution [182]. The in-
verse Fourier transform of D1(fx, fy) yields, at least theoretically, the complex
signal, Ψ(x, y).

The FTP uses optical geometries similar to those of projection moiré to-
pography [171]. The most common and easy for implementation is the crossed-
optical-axes geometry, like the one depicted in Fig. 1. For the measurement
with a reference plane, the phase change is determined from Δϕ(x, y) =
Im{log[Ψ(x, y)Ψ∗

r(x, y)]} [183], where Ψ∗
r(x, y) corresponds to the reference

plane and is obtained after the inverse Fourier transform of the filtered posi-
tive or negative counterpart of the fundamental spectrum.

The necessary condition to avoid overlapping of the spectra in (37) if we
assume without a loss of generality that the carrier fringes are parallel to the
y axis, is given by [173]:

[
f0x +

1
2π

∂ϕ(x, y)
∂x

]

x,y∈S

> 0 or
[
f0x +

1
2π

∂ϕ(x, y)
∂x

]

x,y∈S

< 0 (26)

The choice of the inequality depends on whether the positive or negative coun-
terpart of first order spectrum has been filtered; here S is the area occupied
by the FP. This limitation on the phase variation and hence on the depth
variation within the object under investigation is the main drawback of the
FFA. It is obvious that the above condition is satisfied only for open fringes
with monotonic phase behaviour which makes the FFA inapplicable to closed
fringes.

In order to avoid aliasing, (f1x)max ≤ (fnx)min for n > 1 and (f1x)min ≥
(fB)max should be satisfied (Fig. 15), where 2πfnx = n[2πf0x + ∂ϕ(x, y)/∂x]
and (fB)max is the maximal frequency of the background spectrum. The above
non-equalities entail

∣∣∣∣
∂ϕ(x, y)
∂x

∣∣∣∣ ≤
2πf0x

3
or
∣∣∣∣
∂h(x, y)
∂x

∣∣∣∣ ≤
L0

3d
(27)
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When the height variation exceeds limitation (27), aliasing errors hamper the
phase retrieval.

Application of the Fourier transform technique without spatial heterodyn-
ing was proposed by Kreis [44, 176]. Applying a proper bandpass filtering to
the Fourier transform

D(fx, fy) = DB(fx, fy) +D1(fx, fy) +D∗
1(fx, fy) (28)

of I(x, y) = IB(x, y)+Ψ(x, y)+Ψ∗(x, y), an estimate D̂1(fx, fy) of D̂∗
1(fx, fy)

can be derived and the phase distribution restored from

ϕ̂(x, y) = arg
{
F−1[D(fx > 0, fy > 0)]

}
(29)

However, the distortions in the restored phase due to possible overlapping of
D1(fx, fy) and D∗

1(fx, fy) are more severe in this case in comparison with
the spatial heterodyning. This technique is appropriate for objects which
cause slowly varying phase modulation centered about some dominant spa-
tial frequency. In view of the obvious relations fx(x, y) = ∂ϕ(x, y)/∂x and
fy(x, y) = ∂ϕ(x, y)/∂y, the phase estimate increases monotonically along X
and Y [184], and the sign of the local phase variation is not restored.

2.3.2 Accuracy Issues and Carrier Removal

Obviously, the two possible ways to improve the accuracy of the FFA is to
vary the carrier frequency or the width of the filter window in the frequency
domain. To ensure monotonic phase change throughout the FP the carrier
frequency should be chosen large enough; however, it may happen that the
carrier fringe period, (f2

0x + f2
0y)−1/2, exceeds the spatial resolution of the

CCD camera. Therefore, high resolution imaging systems are required for
the measurement of steep object slopes and step discontinuities [185]. Be-
sides, introduction of the spatial carrier entails, as a rule, a change in the
experimental setup which could require sophisticated and expensive equip-
ment that may not always be available. In addition, the change in the carrier
frequency could hardly be synchronized with the dynamic behaviour of the
object. The width of the Fourier-plane window affects in opposite ways the
accuracy of phase restoration and spatial resolution [186]. The three terms
in (25) are continuous functions throughout the Fourier domain. If the fil-
ter width is taken too large the information from the rejected orders of the
Fourier transform will leek into the processed frequency window leading to
phase distortions. Decrease of the width worsens the spatial resolution. A
trade-off between accuracy of phase determination and spatial resolution is
required.

Obviously, for the real FP that is corrupted by noise the demodulated
phase estimate, ϕ̂(x, y), differs from the real phase given by (23). Since the
noise covers the whole Fourier transform plane, a decrease in filter width leads
to considerable noise reduction. For optimal filtering prior information on the
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noise and bandwidth of the modulating signals is required. This dependence
of filter parameters on the problem to be solved makes automatic processing
of the fringe patterns difficult [187]. Using of tight square profile filter window
leads to ‘filter ringing’ causing distortions in the restored phase distribution
[182]. Phase accuracy of approximately 0.01 fringe is obtained for a Gaus-
sian apodization window centered at the carrier frequency [172]. The main
advantage of a Gaussian filter is its continuous nature and absence of zeros
in the Fourier transform. Use of a 2D Hanning window is reported in [188]
which provides better suppression of noise. The background phase distribution
caused by optical aberrations can be also eliminated using differential mode
[181]. Substantial reduction of the background intensity can be achieved by
the normalization procedure developed in [189] which includes determination
of two enveloping 2D functions eb(x, y) and ed(x, y) obtained by applying sur-
face fitting to the centre lines of bright and dark fringes. The wrapped phase
of the normalized fringe pattern

In(x, y) = A
I(x, y) − ed(x, y)
eb(x, y) − ed(x, y)

+B (30)

where A and B are normalization constants, remains the same as for the
non-normalized pattern, but the contribution of the background is strongly
diminished. A transform-domain denoising technique for processing of speckle
FPs based on the discrete cosine transform with a sliding window and an
addaptive thresholding is developed in [190]. To decrease the noise influence a
method to enhance the FP by modifying the local intensity histogram before
the Fourier transform is proposed in [184]. Modification is based on monotonic
transformation from the real intensity values to the ideal values thus removing
the noise without worsening of the contrast. A background removal is proposed
in [191] for the case of continuous registration of FPs by adding the patterns
in series. After normalization to the grey-level range of the CCD camera, the
intensity distribution of the resulting pattern gives the background estimation
at high number of added patterns. The method proves to be especially efficient
for low carrier frequency FPs when the zero- and first-order peaks overlap to
a great extent.

Improvement of the spatial resolution without loss of phase demodulation
accuracy is proposed and verified in [186]. The idea is to make use of the two
complementary outputs of an interferometer taking in view that the locations
of constructive interference in the plane of the first output correspond to
destructive interference at the second output, i.e. we have:

I1(x, y) = IB1(x, y) + IV 1(x, y) cos[ϕ1(x, y) + 2π(f0xx+ f0yy)] (31)
I2(x, y) = IB2(x, y) − IV 2(x, y) cos[ϕ2(x, y) + 2π(f0xx+ f0yy)] (32)

If precautions are taken to ensure equal contrasts and gains in a perfect way
while recording the two interferograms by two different cameras, the zero-order
spectrum vanishes at subtraction of the Fourier spectra of both patterns. This
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permits to increase the size of the window of the filter applied to the first-
order spectrum and the spatial resolution respectively by a factor of 2. The
FFA method with two complementary interferograms is very useful for images
with high spatial frequencies in which the fundamental spectrum is not well
localized or for the case of undersampling [181]. Elimination of the zero-order
by registration of two FPs phase shifted at π using a defocused image of a
Ronchi grating is proposed in [192]. The authors reported contribution of the
higher orders to be 25% in comparison with the fundamental spectrum. Pro-
jection of a quasi-sinusoidal wave and π phase shifting technique increase the
acceptable height variation to |∂h(x, y)/∂x| ≤ L0/d [183].

A modification of the FFA which makes it suitable for a special class
of closed FPs is proposed in [173]. The goal is achieved by transforming the
closed FP into an open FP in a polar coordinate system using x = X+r cos θ,
y = Y + r sin θ where X, Y are the coordinates of the center of the closed
FP in the Cartesian coordinate system and the point (X,Y) is chosen for
the origin of the polar coordinate system. The FP in the r-θ space consists
of straight open fringes that permit application of the conventional FFA.
However, this is true only for a concave or convex phase surface with the
origin of the polar coordinate system coinciding with the apex of the wave-
front. The phase retrieved in the r-θ space is transformed back to the Carte-
sian coordinate system and the phase map of the closed-fringe pattern is
recovered.

The Fourier transform is calculated using a discrete Fourier transform
(DFT). Using of DFT leads to the so-called leakage for frequencies that are
not integer multiplies of (1/NxΔx, 1/NyΔy) [193]. Several authors point out
that the error induced by the leakage effect in the retrieved phase is inevitable
due to the discretization of the image by the CCD and non-integer num-
ber of fringes within the image [172, 191, 193, 194]. The distortions caused
by the leakage are negligible if the carrier frequencies ensure integer num-
ber of fringes within the image and the object height distribution is con-
centrated also within the image [194], i.e. no phase distortions occur at the
image boundaries. To avoid the leakage effect when large objects are mon-
itored with a non-vanishing height at image borders, a method is proposed
in [194] in which the full image is divided in overlapping subimages by a
window that slides along the axis normal to the carrier fringes, e.g. axis X.
The window width is chosen approximately equal to one fringe period. If
this width is NW , Nx − NW , consecutive images are processed. The next
step is to apply Fourier transform successively to all rows parallel to the
X-axis of each subimage, thus achieving a local phase demodulation. The
sliding pace is one discretization step per subimage which in practice en-
sures phase recovery at each point of the image and explains why the method
is called interpolated or regressive 1D Fourier transform [194]. Briefly, the
fringe pattern in each subimage I(xk, . . . , xk+NW , yl) is modelled by a single-
frequency sine-wave Ik,l(x) = Ak,l sin(2πfk,lx + ϕk,l) with frequency fk,l and
phase ϕk,l connected to the height in the point (kΔx, lΔy). The Fourier
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transform of the sine-wave leads to a set of two non-linear equations which
when solved for the two largest Fourier coefficients yield the required fre-
quency fk,l and phase ϕk,l [194]. The frequencies evaluated by the proposed
approach are not limited to the frequencies of the Fourier transform and no
leakage occurs. The necessity to find out the two largest spectral lines of the
locally computed FFT involves sorting operations which increases slightly the
computational burden. Sine-wave modelling gives good results in image re-
gions without abrupt phase changes, i.e. for smooth objects without height
discontinuities.

The discrete nature of the Fourier spectrum may cause distortions in the
recovered phase at the step of removal of the heterodyning effect. If the sam-
pling interval in the frequency domain is considerably large, it is difficult to
translate the positive or negative component of the fundamental spectrum by
exactly (f0x, f0y) to the origin. If the bias error in the shifted position of the
fundamental spectrum is (δf0x, δf0y), the retrieved phase is given by

ϕ̂(x, y) = ϕ(x, y) exp {−2πj(xδf0x + yδf0y)} (33)

with |δf0x,y| ≤ 0.5Δf0x,y, where Δf0x and Δf0y give the resolution in the
frequency domain. The modulation of the true phase may lead to considerable
phase shifts in some parts of the object. Distortions in the recovered phase due
to the discrete nature of the Fourier spectrum are studied in [175, 180]. The
approach proposed there relies on background and carrier frequency evaluation
by the least-squares fit of a plane in the part of the recorded image that is
not affected by the object. The evaluated phase plane is subtracted from
the retrieved phase in the spatial domain. However, this approach is rather
cumbersome due to inevitable dependence on the proper choice of the object-
free area. An efficient approach is proposed in [195] to evaluate the phase map
ψ(x, y) = 2πf0xx + ϕ(x, y) from the FP by computing the mean value of its
first phase derivative along the X-axis

ψ̄′(x, y) =
∂[ψ(x, y)]

∂x

∣∣∣∣
S

= 2varphif0x +
∂ϕ(x, y)
∂x

∣∣∣∣
S

(34)

where ()
∣∣∣
S

denotes averaging over the entire image S. It is reasonable to
assume that the expectation of the derivative is given by 2πf0x. Thus sub-
traction of the estimate of the mean value (34) from the 2D map of the first
phase derivative along the X-axis is expected to yield the first derivative of
the phase modulation caused by the object. The first derivative is calculated
as a difference of the phase values at two adjacent pixels, ψ(xi+1) − ψ(xi).

In [196] carrier removal is performed using an orthogonal polynomial curve
fitting algorithm. For the purpose, intensity distribution along one row parallel
to e.g. X-axis is modelled by a sine-wave whose Fourier transform, Fs(ω), can
be represented theoretically by [196]:

Fs(ω) =
a

jω − ζ
+

a∗

jω − ζ∗
(35)
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where ζ is the pole of Fs(ω). By fitting Fs(ω) with an orthogonal polynomial
and using a least-square approach, an estimate of the carrier frequency can
be obtained from (35) as ω̂ =

∣∣∣ζ̂
∣∣∣. The algorithm is based on the assumption

that the carrier frequency is the same throughout the whole image. To find
the carrier frequency [191] makes use of the sampling theorem applied to the
amplitude of the Fourier transform in the spatial frequency domain. Using the
interpolation formula [191]:

|D(fx, fy)| =
∑
m,n

|Dmn| sin c[π(f ′
x −m)] sin c[π(f ′

y − n)] ,

f ′
x,y = fx,y(Δfx,y)−1

(36)

with Dmn = D(mΔfx, nΔfy), one is able to calculate precisely the carrier
frequency.

An important drawback of carrier removal based on a frequency shift or by
applying techniques described in [191, 195, 196] is inability to remove possible
non-linear component of the carrier frequency. Such situation is encountered
when divergent or convergent illumination is used for grating projection on
the large- or small-scale object which yields a carrier FP with a non-equal
spacing, for which the carrier removal by frequency shift fails [197]. To deal
with this case Takeda et al proposed in [171] to use a reference plane. This
solution entails implications such as the need of two measurements as well as
the careful adjustment of the reference plane and increases the overall uncer-
tainty of the measurement. Srinivasan et al. [198] propose a phase mapping
approach without a reference plane. There have been developed methods that
directly estimate a phase-to-height relationship from the measurement system
geometry without estimating the carrier frequency. A profilometry method for
a large object under divergent illumination is developed in [199] with at least
three different parallel reference planes for calibration of the geometrical pa-
rameters of the system. The calibration permits to convert directly the phase
value composed of both the carrier and shape-related components to a height
value. However, high accuracy of determination of the geometrical parame-
ters is required which makes the process of calibration very complicated. A
general approach for the removal of a nonlinear-carrier phase component in
crossed-optical-axes geometry is developed in [200] for divergent projection
of the grating with a light beam directed at angle α to the normal to the
reference plane and a CCD camera looking normally at it. If for this optical
geometry the carrier fringes are projected along the Y-axis, the phase induced
by them depends on x-coordinate in a rather complicated way [200]

φ(x) = 2π
x∫
0

f0x(u)du = 2πpL1H

x∫
0

(L2 + u sin β)−1[H2 + (d+ u)2]1/2du+ φ(0)
(37)
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where φ(0) is the initial carrier phase angle, p is the grating pitch, β is the
angle between the grating and the reference plane and L1, L2, H and d are
distances characterizing the optical geometry. The authors propose to use a
power series expansion for φ(x):

φ(x) =
∞∑

n=0

anx
n (38)

and to determine the coefficients a0, a1, . . ., an . . . by a least-squares method
minimizing the error function:

Ω(a0, a1, . . . , aN ) =
∑

(x,y)∈S

[a0 + a1x+ . . .+ aNx
N − ϕ(x, y)]2 (39)

where S comprises all image points, ϕ(x, y) is the unwrapped phase, and the
number N ensures an acceptable fit to ϕ(x, y). The method is generalized for
carrier fringes with an arbitrary direction in the spatial plane. The phase-
to-height conversion becomes much simpler at successful elimination of the
nonlinear carrier.

Reliability of the FFA is thoroughly studied in [193] at all steps involved
in the phase demodulation by means of 1D model of an artificial ideal noise-
free open-fringes sinusoidal FP with constant magnitudes of IB(�r), IV (�r) and
ϕ(�r) throughout the image. The purpose of analysis is to identify only the
errors inherent in the FFA. The filter used in the spatial frequency domain
is a rectangular window apodized by a Gaussian function. As a result, an
improved formula for phase derivation from the complex signal Ψ(x, y) is
proposed.

One of the most serious problems of the FTP arises from objects with
large height discontinuities that are not band-limited which hinders applica-
tion of the Fourier analysis. In addition, discontinuous height steps and/or
spatially isolated surfaces may cause problems with the phase unwrapping
[158, 201]. A modification of FFA, proposed in [182], makes unnecessary phase
unwrapping by simple elimination of any wraps in the calculated phase dis-
tribution. This is achieved by proper orientation of the projected fringes and
by choosing independently the angle between the illumination and viewing
directions, θ, and the fringe spacing, L, in a way as to fulfil the requirement
h(x, y)L−1 sin θ ≤ 1 after removal of the carrier frequency. Obviously, the
method is efficient only for comparatively flat objects at the expense of de-
creased resolution. A two-wavelength interferometer is developed in [202]. The
recorded pattern is given by

I(x, y) = IB(x, y) + IV 1(x, y) cos[2πf1x + ϕ1(x, y)]

+IV 2(x, y) cos[2πf2x + ϕ2(x, y)],
(40)

where ϕ1,2 = 2πh(x, y)/λ1,2 and f1,2x are inversely proportional to both used
wavelengths. The Fourier transform of the recorded pattern yields
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D(fx, fy) = DB(fx, fy) +
2∑

k=1

[Dk
1 (fx − f1x, fy) +Dk∗

1 (f0x + f1x, fy)] (41)

Two first-order spectra are selected, e.g. D1
1 and D2∗

1 , by bandpass filtering
and shifted towards the origin of the coordinate system. After the inverse
Fourier transform one obtains:

Ψ(x, y) = IV (x, y) cos[Ξ(x, y)] exp[jΓ(x, y)] (42)

where precautions are taken to provide IV (x, y) = IV 1(x, y) = IV 2(x, y) and
Ξ(x, y) = πh(x, y)/Λ1 and Γ(x, y) = πh(x, y)/Λ2. Here Λ1 = λ1λ2/(λ1 +λ2) is
the average wavelength, and fx = ω0

aR
is the synthetic wavelength. As it could

be seen, the phase modulation using the synthetic wavelength substantially
increases the range of the interferometric measurement without need for phase
unwrapping.

Correct restoration of the 3D object shape and accurate phase unwrapping
across big height variations and surface discontinuities can be done using mul-
tiple phase maps with various sensitivities. A method called spatial-frequency
multiplexing technique was proposed in [203]. The proposed idea is extended
in [204] to a technique termed multichannel FFA. The key idea of the method
is that phase discontinuities which are not due to the processing algorithm but
to surface discontinuities would appear at the same location on FPs gener-
ated with differing carrier frequencies. These FPs can be projected simultane-
ously on the object surface if FFA is used [203]. The spectra that correspond
to the used multiple FPs are separated in the frequency space by means of
a set of bandpass filters tuned to the carrier frequencies of the fringes. A
FFA interferometric technique for automated profilometry of diffuse objects
with discontinuous height steps and/or surfaces spatially isolated from one
another is designed and tested in [201]. It makes use of spatiotemporal speck-
legrams produced by a wavelength-shift interferometer with a laser diode as
a frequency-tunable light source. Necessity to record and process multiple
FPs under stringent requirement for vibration-free environment is the main
drawback of the developed approach. Phase demodulation and unwrapping
by FFA for discontinuous objects and big height jumps obtains further de-
velopment in [205]; the merit of the work is that all necessary information is
derived from a single FP. This is achieved by combining spatial-frequency mul-
tiplexing technique with Gushov and Solodkin unwrapping algorithm [206].
The FP projected on the object consists of multiple sinusoids with different
carrier frequencies:

I(x, y) = IB(x, y) + IV (x, y)
K∑

k=1

cos[ϕk(x, y) + 2π(fkxx+ fkyy)] (43)

Defining a set of simultaneous congruence equations for the real height distri-
bution and height distributions corresponding to wrapped phase maps ϕk(x, y)
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and using the Gushov and Solodkin algorithm, phase unwrapping can be done
pixelwise. A coaxial optical sensor system is described in [207] for absolute
shape measurement of 3-D objects with large height discontinuities and holes
without shadowing. This is achieved by a depth of focus method with a com-
mon image plane for pattern projection and observation. The FFA is applied
for evaluation of the contrast, IV (x, y). The absolute height distribution is
determined from the translation distance of the image plane that ensures a
maximum fringe contrast at each pixel like in a white-light interferometry.
Absolute phase measurement using the FFA and temporal phase unwrapping
is developed in [188]. Use of a four-core optical fibre for pattern projection
and 2D Fourier analysis is demonstrated in [208]. The projected FP is formed
as a result of interference of the four wave fronts emitted from the four cores
located at the corners of the square.

In its essence, the FTP is based on determination of the quadrature com-
ponent of the signal, i.e. it is described by approximation of the Hilbert trans-
form. Kreis [209] is the first who applies a 2D generalized Hilbert transform for
phase demodulation. However, the discontinuity of the used Hilbert transform
operator at the origin leads to ringing in the regions where the phase gradient
is close to zero. Accuracy of this approximation depends on the bandwidth of
the processed signal. Contrary to the traditional opinion that it is not pos-
sible to find natural isotropic extension of the Hilbert transform beyond one
dimension and to apply the analytic signal concept to multiple dimensions,
a novel 2D quadrature (or Hilbert) transform is developed in [210, 211] as a
combined action of two multiplicative operators: two-dimensional spiral phase
signum function in the Fourier space and an orientational phase spatial oper-
ator. The quadrature component of the FP Ĩ(�r) = I(�r)− IB(�r) obtained after
the removal of background is obtained from the approximation

j exp[jθ(�r)]IV (�r) sin[ϕ(�r)] ∼= F−1{S(�f)F [Ĩ(�r)]} (44)

where θ(�r) is the fringe orientation angle, and S(�f) is the 2D spiral phase
signum function

S(�f) =
fx + jfy√
f2

x + f2
y

(45)

The new transform shows effective amplitude and phase demodulation of
closed FPs. A vortex phase element has been applied in [212] for demodu-
lation of FPs. The phase singularity of the vortex filter transforms the FP
into a pattern with open fringes in the form of spirals which allows for differ-
entiating between elevations and depressions in the object.

2.4 Space-frequency Representations in Phase Demodulation

2.4.1 Wavelet Transform Method

The FFA as a global approach exhibits unstable processing for patterns with
low fringe visibility, non-uniform illumination, low SNR as well as in the
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presence of local image defects which influence the entire demodulated phase
map [213]. Since the spatial gradient of the phase is proportional to the fringe
density, information about the latter is a step towards phase demodulation.
This observation paves a ground for introduction of space-frequency meth-
ods in the fringe analysis. New phase retrieval tools have been applied as the
windowed Fourier transform (WFT) [214, 215] and the continuous wavelet
transform (CWT) [216].

The wavelet transform is a method that can detect the local characteristics
of signals. This explains extensive research in wavelet processing of FPs and
interferograms during the last decade [217, 218]. It could be very useful for
patterns with great variation of density and orientation of fringes – the case
in which the standard FFA fails [28]. The other methods that are capable
to ensure localized phase retrieval, as the WFT or the regularised phase-
tracking algorithm generally would require a priori information about the
fringe density and orientation. In the wavelet transform analysis it is not
necessary to choose the filter in the frequency domain. An extensive review
of the wavelet transform can be find in [219].

The idea to apply the CWT to the 2-D fringe data is proposed indepen-
dently in [220] and [213]. The CWT can be applied both to open and closed
fringes. The CWT shows promising results as a denoising tool for interfer-
ograms in holography and speckle interferometry [221] and as a method to
improve bad fringe visibility in laser plasma interferometry [213]. In white-
light interferometry, CWT proves to be very effective for detecting the zero
optical path length [222]. The wavelets can be very useful for finding the
zones with a constant law of variation of the fringes [223]. The CWT of a 1D
function I(x) is defined as

Φ(a, b) =

∞∫

−∞
I(x)ψ∗

a,b(x)dx =
√
a

∞∫

−∞
ψ̂(afx)D(fx) exp(jbfx)dfx (46)

where ψa,b(x) = |a|−1/2ψ
(

x−b
a

)
, a 	= 0 and b are scaling and translation

parameters which are real, and ψ̂(x) = F [ψ(x)]. The kernel of the transform is
a single template waveform, the so-called mother wavelet ψ(x) which should
satisfy the admissibility condition [219], in order to have a zero mean and
should present some regularity to ensure the local character of the wavelet
transform both in the space and frequency domains. The above conditions
mean that the wavelet can be considered as an oscillatory function in the
spatial domain and a bandpass filter in the frequency domain. The scaling
factor entails the change of the width of the analyzing function thus making
possible analysis of both high-frequency and low-frequency components of a
signal with good resolution. Usually, the mother wavelet is normalized to have
a unit norm [219]. The wavelet transform decomposes the input function over
a set of scaled and translated versions of the mother wavelet. The Fourier
transform of the daughter wavelet ψa,b(x) is
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ψ̂a,b(fx) = |a|1/2ψ̂(afx) exp(−jbfx) (47)

where ψ̂(fx) is the Fourier transform of the mother wavelet.
The wavelet transform Φ(a, b) plotted in the spatial coordinate/spatial

frequency space gives information about the frequency content proportional
to 1/a at a given position b. In case of the FPs the translation parameter b
follows the natural sampling of the FP, given by the pixel number, b→ n, n =
0, . . . , N , where N is the total number of pixels. The parameter a ∈ [amin, amax]
is usually discretized applying a log sampling a = 2m, where m is an integer.
Finer sampling is given by [219, 224]:

ψν
n(x) = 2−(ν−1)/Nνψ(2−(ν−1)/Nνx− n), ν = 1, . . . , Nν (48)

where the fractional powers of 2 are known as voices and the spatial coordinate
x is also given in the units of a pixel number. One should make a difference
between the CWT and the discrete wavelet transform which employs a dyadic
grid and orthonormal wavelet basis functions and exhibits zero redundancy.

The modulus of the CWT |Φ(a, b)|2 is the measure of a local energy den-
sity in the x − fx space. The energy of the wavelet ψa,b(x) in the x − fx

space is concentrated in the so-called Heisenberg box centered at (b, η/a)
with lengths aΛx and Λf/a along the spatial and frequency axis respec-

tively, where
∞∫

−∞
x2|ψ(x)|2dx = Λ2

x, 1
2π

∞∫
0

(fx − η)2|ψ̂(fx)|2dfx = Λ2
f and

1
2π

∞∫
0

fx|ψ̂(fx)|2dfx = η. The area of the box, ΛxΛf , remains constant. The

plot of I(x) = IB(x) + IV (x) cos[2πf0x(x)x + ϕ(x)] as a function of position
and frequency is called a scalogram [215, 216]. The huge amount of infor-
mation contained in the CWT Φ(a, b) could be made more condensed if one
considers the local extrema of Φ(a, b). Two definitions of CWT maxima are
widely used:

i) wavelet ridges used for determination of the instantaneous frequency and
defined as

d(|Φ(a, b)|2/a)
da

= 0; (49)

ii) wavelet modulus maxima used to localize singularities in the signals and
defined as

d|Φ(a, b)|2
db

= 0; (50)

The choice of a proper analyzing wavelet is crucial for the effective process-
ing of the FPs. The most frequently used in interferometry and profilometry
wavelet is the truncated form of the Morlet wavelet which is a plane wave
modulated by a Gaussian envelope

ψ(x) = π−1/4 exp(jω0x) exp
(
−x

2

2

)
(51)
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It is well-suited for processing of pure sinusoids or modulated sinusoids; ω0

is the central frequency. The correction term exp(−ω2
0/2) which is intro-

duced in the complete form of the Morlet wavelet ψ(x) = π−1/4 exp(jω0x −
ω2

0/2) exp(−x2/2) to correct for the non-zero mean of the complex sinusoid is
usually neglected as vanishing at high values of ω0. Usually ω0 > 5 is chosen
to ensure ψ̂(fx = 0) ≈ 0 [221], which means that the Morlet wavelet has five
‘significant’ oscillations within a Gaussian window. The Morlet wavelet pro-
vides high frequency resolution. The Fourier transform and energy spectrum
of the Morlet wavelet are

ψ̂(fx) =
√

2 4
√

π exp
[
− (fx − ω0)2

2

]
and |ψ̂(fx)|2 = 2

√
π exp

[−(fx − ω0)2
]

(52)
For complex or analytic wavelets the Fourier transform is real and vanishes for
negative frequencies. So, the Morlet wavelet removes the negative frequencies
and avoids the zero-order contribution [221]. The Morlet wavelet produces a
bandpass linear filtering around the frequency ω0/a. Two other wavelets used
in fringe analysis are the Mexican hat wavelet [216] and the Paul wavelet of
order n [225].

The apparatus of the wavelet ridges can be used for phase demodulation of
FPs, if the analyzing wavelet is constructed as ψ(x) = g(x) exp(jω0x), where
g(x) is a symmetric window function and ω0 > 2Λf , i.e. ψ(x) practically
rejects negative frequencies. The CWT of the AC component of one row or
column of the FP I(x,y) takes a form:

Φ(a, b) =a−1/2

∞∫

−∞
IV (x) cos ϕ(x)g

(
x− b

a

)
exp

[
−jω0

a
(x− b)

]

dx =Z(ϕ) + Z(−ϕ) (53)

where

Z(ϕ) =
a−1/2

2

∞∫

−∞
IV (x+ b) exp[jϕ(x+ b)]g

(x
a

)
exp

(
−jω0

a
x
)
dx (54)

It is difficult to solve analytically the integral in (54), but in the case of small
variation of visibility and phase of the fringes over the support of the analyzing
wavelet ψa,b, we can use a Taylor series expansion of IV (x) and ϕ(x) to the
first order to simplify (54).

IV (x+ b) ≈ IV (b) + xI ′V (b), ϕ(x+ b) ≈ ϕ(b) + xϕ′(b) (55)

where I ′V (b) and ϕ′(b) are the first order derivatives of IV and ϕ(b) with
respect to x. Taking in view the symmetric character of g(x) and the condition
ω0 > 2Λf , one obtains [216]:
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Φ(a, b) ≈ Z(ϕ) =
√
a

2
IV (b)ĝ

{
a
[ω0

a
− ϕ′(b)

]}
exp[jϕ(b)] (56)

To make contributions of the second order terms negligible, the following non-
equalities should be fulfilled for the second order derivatives [216]:

ω2
0

|ϕ′(b)|2
|I ′′V (b)|
|IV (b)| << 1 and ω2

0

|ϕ′′(b)|
|ϕ′(b)|2 << 1 (57)

As it can be seen from the expression (56), there are two possible ways to
determine the phase from the CWT behaviour on the ridge:

i) from the rescaled scalogram

|Φ(a, b)|2
a

=
I2
V (b)
4

∣∣∣ĝ
{
a
[ω0

a
− ϕ′(b)

]}∣∣∣
2

(58)

which for the points on the ridge yields directly the instantaneous fre-
quency ω0a

−1
R (b) = ϕ′(b), where aR is the value that maximizes |Φ(a, b)|2;

ii) from the phase of the CWT on the ridge

Φ(aR, b) ≈ Z(ϕ) =
√
aR

2
IV (b) exp[jϕ(b)] (59)

In the gradient-based algorithm the phase is calculated by integration and
no phase unwrapping is needed. In (59) the phase is determined modulo 2π.
Obviously in the case of open fringes the phase of the ridge is exactly the same
as the phase of the signal [226]. For the closed fringes the sign of the phase
gradient should be determined independently, e.g. by employing PS technique
[227]. The ridge extraction is correct only for the so-called analytic asymptotic
limit of the intensity signal with respect to the width of the analyzing wavelet
which is a severe limitation on the CWT method, especially if objects with
cracks, holes, or such that introduce slow variations in the phase are to be
evaluated [221]. Analysis made in [221] reveals that the CWT method exhibits
high accuracy at large phase gradients whereas slow variations of the phase are
not so well localized. Improvement of accuracy requires to adopt the higher
spatial fringe frequency direction [221]. The gradient-based method needs also
knowledge in advance of the sign of the first derivative of the phase, and also
of the phase itself over a set of points. Along the ridge of the 3-D surface
Φ(a, b) the true input signal is efficiently captured even when it is strongly
contaminated with noise. The strong noise suppression is intrinsic for the
ridge extraction procedure. In other words, the phase gradient in the vicinity
of the pixel b is proportional to 1/aR. The ridge points can be found by a
standard procedure applied to determine the maximum of a function or by
more sophisticated algorithms to select accurately the ridge in noisy FPs.
The direct approach when the maximum of Φ(a, b) is searched as the highest
magnitude at each value of b works well at high SNRs. In [228] ridge detection
is based on minimization by Monte-Carlo type methods of a penalty function
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on the set of all possible ridge curve candidates taking into account a priori
information of the signal and the noise. The procedure is shown to be robust to
additive white noise. In [229] a cost function is built for the adaptive selection
of the ridge:

cos t[ϕ(b), b] = −C0

∫

b

|Φ[ϕ(b), b]|2db + C1

∫

b

∣∣∣∣
∂ϕ(b)
∂b

∣∣∣∣
2

db (60)

where ϕ(b) is a parameter curve of b; C0, C1 are the positive weight coefficients.
The cost function is small for signals with large magnitude and a smooth
parameter curve.

In [220] the CWT is applied to the rows of a 2D interferogram using a
Morlet analyzing wavelet. Each row after being extended by interpolation at
its both edges to avoid discontinuities is processed separately from the other
rows, and the phase is retrieved by integration from the phase gradient up to
an additive constant. To find these constants, the CWT is applied also to the
diagonal of the FP and the heights of the rows are adjusted correspondingly.
Due to integration of the phase gradient, no phase unwrapping is required.
Phase evaluation by integration of the phase gradient with a Paul wavelet is
proposed in [230]. The efficiency of this analyzing wavelet is checked by means
of simulated FPs which are processed row by row with extension of each row on
both sides by zero padding. Reference [231] justifies CWT application in fringe
profilometry with crossed-optical geometry. It is shown that the modulated
phase Δϕ(x, y) = ϕ(x, y) − ϕr(x, y) can be obtained as a difference

Δϕ(x, y) = ϕ(x, y) − ϕr(x, y) = ϕ(aR, b) − ϕr(a
r
R, b) (61)

where ar
R is the scale factor at the ridge of FP on the reference plane at

every position b. The simulations and experiment prove that the CWT phase
retrieval with the Morlet wavelet overcomes the limitation imposed by the FT
profilometry on the height of the investigated objects. The same wavelet is
used in [232] where the authors make comparison between the gradient-based
CWT, phase-based CWT and FT profilometry.

A technique which is totally different from the gradient-based and phase-
based CWT phase demodulation of carrier fringe patterns is presented in [233].
It implies that the spatial carrier frequency is much larger than expansion of
the spectrum associated with the height variation of the object. The basic idea
is to isolate the carrier frequency from the spectrum of ϕ(x, y) on the frequency
scale. For the purpose, the CCD-recorded spatial carrier FP is modulated by
two sinusoidal waves generated at the carrier frequency fx0 and phase-shifted
at π/2:

Ms(x, y) = IB(x, y) sin(2πf0x)

+IV (x, y) {cos[4πf0xx+ ϕ(x, y)] − sin ϕ(x, y)}
(62)
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Mc(x, y) = IB(x, y) cos(2πf0x)

+IV (x, y) {cos[4πf0xx+ ϕ(x, y)] + cosϕ(x, y)}
(63)

As it can be seen, the spectra of the terms IV (x, y) sin ϕ(x, y) and IV (x, y)
cos ϕ(x, y) are the lowest on the frequency scale. Now the object spectrum
can be separated from all other contributions in (62) and (63) by the CWT
using as an analyzing wavelet the scaling function which puts the spectra of
IV (x, y) sin ϕ(x, y) and IV (x, y) cos ϕ(x, y) in the approximation band. This
method requires phase unwrapping. The shortcomings of the method are the
necessity to know the carrier frequency and the constraint imposed on the
range of object phase variation.

In [234] the CWT is applied to remove irregular localized noise in a set
of low-SNR phase-shifted moiré interferograms which are typical for measure-
ments in which the physical change is of the order of the measurement sen-
sitivity. The 1D CWT is used for preprocessing of the phase-shifted patterns
recorded using a four-step algorithm. It is shown that the ridge extraction of
the CWT yields information about the local spatial frequencies at each posi-
tion of the processed FP whereas the spurious frequencies connected with the
noise have negligible contribution in the ridge formation. Thus, restoration
of the local frequency map from the ridge detection permits to regenerate
denoised FPs.

Four-step PS interferometry and CWT are combined in [235] for phase
demodulation with increased accuracy in moiré interferometry with noisy FPs.
To avoid the error in calculation of the CWT that arises from the finite length
of the data sequences, the authors propose to introduce computer-generated
carrier phase in a way that the modified input sequence contains enough
spatial periods to neglect the finite length of the data array. Application of
the CWT to the measurement of in-plane displacements by the digital speckle
pattern interferometry (DSPI) and out-of-plane deflection by the projecting
moiré fringes has been recently reported for demodulation of fringes with
non-uniform carrier frequency distribution over the image [236]. Considering
a 1-D FP I(x) = IB(x) + IV (x) cos[2πf0x(x)x + ϕ(x)] with a non-uniform
carrier f0x(x) and representing the phase ϕ(x) as a Taylor series near the
point of interest b up to the linear term ϕ(x) ≈ ϕ(b) + ϕ′(b)(x − b) on a
limited support [b− as, b+ as] for a Morlet analyzing mother wavelet with a
support [−s, s], it is obtained [236]:

Φ(a, b) =
√

2πIB(b) exp
(
−ω2

0
2

)

+
√

2π
2 IB(b)IV (b) exp {jΩ(b)} exp

(
−a2

2 Θ
) (64)

where Θ = Θ(a, b,ω0) and the phase Ω(b) = 2πf(b)b+ϕ(b) of Φ(a, b) contains
information about the modulation phase ϕ(x) at any point b for a fixed value
of a. The obtained expression permits to derive the phase change between two
states of the object under condition that local value of the carrier frequency
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is kept unchanged. Since the support window depends on the scaling param-
eter a, a statistical procedure is developed to derive the phase searching in
the whole scaling range of the wavelet transform. A similar idea is proposed
in [237] for elimination of phase distortion in phase-shifted fringe projection
method caused by declination of the projected FP from the ideal sinusoidal
form. By differentiating the above expression for Φ(a, b), the phase value Ω(b)
is evaluated from

Ω(b) = tan−1

{
Im[Φ(amax, b)]
Re[Φ(amax, b)]

}
= 2πfxb+ ϕ(b) (65)

where amax is obtained from dΦ(a, b)/da = 0. The described procedure for
phase extraction requires phase unwrapping. Application of CWT for local-
ization of defects in FPs in non-destructive testing is described in [238]. A
new approach for micro-range distance measurement that makes use of moiré
effect and wavelet representation is described in [239]. The 1D wavelet anal-
ysis with a Mexican hat wavelet is used to determine the pitch of the moiré
pattern. In [226] a correlation is observed between a FP and its wavelet map.
On the basis of this observation an algorithm is presented for reconstruction
of lines of interference fringes, which, however, is effective only for vertical
fringes. In all modifications of the CWT approach the 2-D FPs are simplified
to 1D patterns [233]; therefore their implementation requires long computa-
tion times. At the same time, none of these modifications exhibit results that
are superior to other widely used fringe processing techniques.

2.4.2 Windowed Fourier Transform Method

The 1D WFT and inverse WFT of the function ζ(x) can be written in a form:

Z(u, fx) =

∞∫

−∞
ζ(x)g(x − u) exp(−jfxx)dx (66)

ζ(x) =
1
2π

∞∫

−∞

∞∫

−∞
Z(u, fx)g(x− u) exp(jfxx)dfxdu (67)

where Z(u, fx) is the WFT spectrum. As it can be seen, the WFT is similar
to the FT except for the symmetrical window function g(x). The WFT kernel
is obtained by translation of the window at u and by modulation at frequency
fx. The WFT processes the signal mainly in the local area defined by the
extent of the window and signals that are separated by a distance greater
than the window width do not influence each other. Thus the WFT spectrum
gives information not only about contribution of different spectral components
but also about where in the signal domain they occur. The resolution limit
or the smallest Heisenberg box [215, 240] is achieved for a Gaussian window.
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The WFT with a Gaussian window is usually called the Gabor transform.
The extension of the 1D WFT to the 2D is straightforward.

Introduction of the window restricts the processed signal area and simpli-
fies interpretation of the spectrum [214] which may consist of a single peak
in the considered local area. Another advantage of the WFT can be effective
noise reduction by implementation of a threshold that simply cuts off the
low noise spectral amplitudes which are spread all over the frequency domain.
Similar to CWT, these particular features of the WFT put foundations for two
processing approaches known as the WF ridges method and the WF filtering
method [214].

The Windowed Fourier filtering can be applied to phase-shifted patterns as
well as to a single pattern with carrier fringes [241]. In the case of a four-step
algorithm with π/2 phase step, the four recorded patterns can be combined
to form the following complex signal [214, 240]:

IPS(x) =
1
2
[I1(x) − I3(x) + jI4(x) − jI2(x)] = IV (x) exp[jϕ(x)] (68)

that undergoes the WFT filtering. In the case of a carrier FPs the signal
itself is formed of a background and two exponential functions. By using the
definition of the WFT, filtering of (68) or of a carrier FP is described with
the following expression [214]:

Ī(x) =
1
2π

b∫

a

{[
I(x) ⊗ g(x) exp(jfxx)

]
⊗ g(x) exp(jfxx)

}
dfx (69)

where ⊗ denotes a convolution with respect to the variable x,[
I(x) ⊗ g(x) exp(jfxx)

]
denotes that the threshold has been applied, and all

spectrum parts that are below the threshold are set to zero. By setting the
integration limits a and b only the desired part of the spectrum is processed
interactively. In the case of phase-shifted images one chooses a < 0 and b > 0
to include both negative and positive frequencies of the FP. For carrier FPs by
choosing b > a > 0, rejection of the background and the negative frequencies
is accomplished. The WFT noise filtering outperforms the conventional FT
filtering [242]. However, the need to determine the threshold and the limits a
and b from the recorded FPs is a serious shortcoming.

To discretize optimally the continuous WFT, the authors of [242] apply
frame theory to form a tight-windowed Fourier frame. It is shown by com-
puter simulation that the tight frame is achieved if sampling intervals in the
frequency domain are chosen inversely proportional to the spatial extensions
of the 2D Gaussian kernel. The noise reduction achieved by the WF frame is
better in comparison with the results obtained with the orthogonal wavelet
transform.

The windowed Fourier ridges method relies on the assumption [240] that
both IB(x) and IV (x) and the first derivative of the phase ϕ′(x) = dϕ(x)/dx
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are slowly varying functions over the window extent. It can be shown that in
this case the WFT consists of 3 terms [240]:

Z(u, fx) = Z(IB) + Z(ϕ) + Z(−ϕ) (70)

where we have

Z(IB) = IB(u) exp(−jufx)ĝ(fx) (71)

Z(±ϕ) =
1
2
IV (u) exp {±j[ϕ(u) ∓ ufx]} ĝ[fx ∓ ϕ′(u)] (72)

and the circumflex denotes the Fourier transform. The three terms of the
WFT are separated in the frequency domain if ϕ′(u) > Λf , i.e. if the fringe
density is rather high. In this case the terms Z(IB) and Z(−ϕ) are negligible
on the ridge of the transform at fx = ϕ′(u). This condition can be satisfied
by introduction of carrier fringes. The carrier fringes are not necessary if the
WFT is combined with the four-step PS technique [240]:

Ii = IBi + IV i cos[ϕ + (i− 1)π/2], i = 1, 2, 3, 4 (73)

It is easy to show that [240]

Z1 − Z3 = 2Z(ϕ) + 2Z(−ϕ),Z4 − Z2 =
2
j
Z(ϕ) +

2
j
Z(−ϕ) (74)

where Zi is the WFT of the pattern Ii. Obviously, Z(ϕ) can be readily com-
puted from

Z(ϕ) = 0.25(Z1 − Z3 + jZ4 − jZ2) (75)

even if ϕ′(u) > Λf is not fulfilled but at the expense of recording four FPs
instead of one.

Capability of the WFT to localize abrupt changes in the fringe density
or local frequency makes it a suitable algorithm for fault detection [232] and
condition monitoring in optical non-destructive testing. The WFT combines
insensitivity to noise of the FFA and sensitivity to local changes of cross-
correlation methods. Monitoring of local frequencies gives information about
the FP evolution. The WFT or Gabor filtering is applied in [243] for effec-
tive removal of the spatial carrier in the case of real FPs, which could be
hardly expected to have parallel and equally spaced spatial carrier fringes.
To ensure effective phase demodulation in such cases, the method developed
in [243] performs localized matching filtration with Gabor filters that form a
specially constructed multi-channel Gabor spatial filter set which spans the
total variation range of the carrier frequency �f0 = (fx0, fy0) = �f0(x, y). By
comparing the outputs of the filters at each point (x, y), a value of the central
frequency of the filter with the maximum output is assigned to �f0(x, y). How-
ever, the underlying theory puts the constraint on the analyzed phase field
which should vary so slowly that its spectrum to be entirely covered by the
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frequency band of each of the Gabor filters. Strain contouring using a set of
Gabor filters is described also in [244]. In [245] a dilating Gabor transform is
introduced by using a Gaussian function with a changeable window in order
to improve the WFT efficiency when processing FPs with a spectral content
that strongly varies across the FP. It is shown that the Fourier transform
spectrum can be represented as a sum of the spectra obtained by the Gabor
transform at different locations of the FP.

2.5 Single Frame Methods

As we have seen, phase demodulation is a relatively simple procedure for
carrier-frequency FPs or for open fringes. However, introduction of carrier
fringes in real time by technical means is a complicated task and restricts
the spectrum of the signal that may be recovered. In many cases one encoun-
ters the problem to process wideband FPs without frequency that is domi-
nant throughout the FP. Such are closed FPs in which the phase experiences
nomonotonous change or FPs, in which the signal is noise dependent [246]. A
frequently met problem is phase demodulation from patterns with partial-field
fringes, in which the FP is available in a subregion of the image. The full-field
methods as the Fourier transform applied to such a FP leads to artefacts at
the borders. Suitable for the closed FPs is the PS technique but at the expense
of acquisition of several frames which is unacceptable for time-varying scene
capture. This motivates concentration of efforts on the development of phase
demodulation techniques from a single FP which in general may consist of
closed fringes.

From the mathematical point of view phase demodulation of a single FP
is an ill-posed problem because of the inherent sign ambiguity [140]. The
phase distributions ϕ1(x, y) = (x2 + y2), ϕ2(x, y) = −(x2 + y2), ϕ3(x, y) =∣∣W (x2 + y2)

∣∣, ϕ4(x, y) = (x2 + y2) at x ≤ 0 and −(x2 + y2) at x > 0 create
the same FP [30, 247], as follows from cos ϕ1 = cos ϕ3 = cos ϕ3 = cos ϕ4; W(.)
is a phase wrapping operator. This makes impossible derivation of a unique
solution from the observed data without introduction of prior constraints in
the demodulation algorithm [140, 247]. Filtering an image or phase unwrap-
ping of noisy images are also ill-posed problems due to unknown information
near the borders of the filter and noise-generated inconsistencies [140].

A powerful tool for solution of such ill-posed problems is Bayesian estima-
tion theory. The estimate is sought as the minimizer of a cost function [140]
which contains data terms derived from the likelihood function and from the
prior model. If the task is to estimate the function f(�r) on the nodes of a
regular lattice L from the observation data I(�r) = Af(�r) +N(�r), available in
�r ∈ S, where A is a noninvertible operator, N is a random Gaussian field with
variance σ2, and S is the subset of L, the likelihood of I(�r) is given by [248]:

P I|f (f) = PN (Af − I) =
1
K

exp

{
−
∑

�r∈S

[Af(�r) − I(�r)]2/2σ2

}
(76)
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where K is a normalization constant. A computationally efficient algorithm is
possible if the prior constraints can be expressed as interactions of neigh-
bouring pixels, i.e. if a Markov random-field model is used. Markovian
prior distribution of f(�r) is given by the Gibbs distribution

Pf (f) = exp
[
−∑

C

VC(f)
]/

K ′, where K ′ is a normalization constant and

the potential functions VC(f) describe the behaviour of f(�r) on a set of
cliques that form a neighbourhood system in L. A clique comprises one or
more sites in L with any two of them being neighbours of each other. The
maximum a posteriori estimator can be built from the posteriori distribution
Pf |I(f) = P I|f (f)Pf (f) of f(�r) as a minimizer of the functional [248]:

U(f̂) =
∑

�r∈S

Φf,g(�r) + ε
∑

C

VC(f̂) (77)

where the function Φf,g(�r) depends on the observation data and the noise
model. The regularization parameter ε depends on the noise variance. The
cost function (77) consists of data terms that ensure solution consistent with
the observations and of regularization terms which take into the account
some properties of the estimate. Following the natural expectation, a fre-
quently applied constraint in the phase recovery problem is the smoothness
of the phase field throughout the FP. In the case of globally smooth f(�r)
the popular Markov random field models are the first-order (membrane) field
described by the potential function Vij(f) = [f(i) − f(j)]2 between pairs
of the nearest-neighbour sites, the second-order (thin-plate) model with the
potential function Vijk(f) = [−f(i) + 2f(j) − f(k)]2 for three neighbouring
sites, lying on a line, and the potential function associated with the sites in
the corners of a rectangular Vijkl(f) = [−f(i) + f(j) − f(k) + f(l)]2, where
f(i) ≡ f(iΔx,y).

The maximum a posteriori estimate obtained as a result of minimization
of (77) is equivalent to a low-pass linear filter acting on the pattern I(�r).
Such a filter has the advantage to be independent on boundary conditions
thus making possible to process FPs with irregular shapes, to enable recov-
ery of missing data and to interpolate data between the lattice nodes. The
regularized approach could also be applied for creation of robust non-linear
filters or of quadrature filters (QFs) [249]. The frequency response of a linear
QF is described by a window function ĝ(�ω) with �ω = 2π�f , e.g. a Gaussian
function as in the case of a Gabor filter, centered at a given carrier frequency
�ω0 = 2π�f0 which exceeds the spread of ĝ(�ω) on the frequency axis. In the spa-
tial domain this QF has a complex impulse response whose real and imaginary
parts g(�r) cos(�ω0 · �r) and g(�r) sin(�ω0 · �r) respectively are connected through a
Hilbert transform, where g(�r) is the inverse Fourier transform of ĝ(�ω). So, if
a QF is applied to Ĩ(�r) = IV (�r) cos[�ω0 · �r + ϕ(�r)], in which the phase change
ϕ(�r) is small in comparison with �ω0 · �r and the filter window in the frequency
domain covers the spectrum of ϕ(�r), the output of filter tuned at �f0 gives the
complex signal Ĩ(�r) = 1

2IV (�r) exp{j[�ω0 · �r + ϕ(�r)]}. Determination of ϕ(�r)
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from this signal is straightforward if the requirement ϕ(�r) << �ω0 ·�r is fulfilled.
In general, to apply the QF to Ĩ(�r) when the latter condition is not valid,
one needs to know the sign of the spatial frequency �ω = 2π�f at the point �r to
correct the sign of the Hilbert transform output [250].

To extend the QF method for wideband or noisy FPs, in [251] it is proposed
to apply the QF adaptively to a local part of the FP where it can be written
in the form:

Ĩ(�r) = IV (�r) cos[ϕ(�r)] = IV (�r) cos[�ω(�r) · �r + ϕ̃(�r)] (78)

Such an adaptive QF can be designed using the Bayesian estimation theory,
with Markov random fields as prior models, under the additional constraints
that the FP is locally monochromatic and the dominant frequency �ω(�r) is a
smooth function across the FP. The idea is to build a complex image Ω(�r) =
Ωre(�r)+ jΩim(�r) as an output of the QF with a tunable frequency �ω(�r). This
complex image is subject to the following constraints [246]:

i) the real part ΩRe(�r) = ĨV (�r) cos[�ω(�r) · �r + ϕ̃(�r)] is locally monochro-
matic, where |ϕ̃(�r)| << ω(�r) · �r; this constraint means that in the
neighbouring points �s = (x − 1, y) or �s = (x, y − 1) one may write
ΩRe(�r) ≈ ĨV (�r) cos[�ω(�r) · �s+ ϕ̃(�r)];

ii) the imaginary part should approximate the corresponding quadrature im-
age, i.e. ΩIm(�r) ≈ ĨV (�r) sin[�ω(�r) · �r + ϕ̃(�r)];

iii) the real part must be proportional to the observed FP, i.e. Ĩ(�r) ∝ I(�r).

Thus the phase ϕ(�r) is determined from Ω(�r). To fulfil the above constraints,
the output of the filter, Ω(�r), is constructed to minimize the following cost
function [246]:

U(Ω) =

∑
(�r,�s)∈S

|Ω(�r) − Ω(�s) − 2[I(�r) − I(�s)]|2 +

+ε
∑

(�r,�s)∈S

|Ω(�r) exp[−0.5j�ω(�r) · (�r − �s)]

− Ω(�s) exp[−0.5j�ω(�s) · (�s− �r)]|2
(79)

where (�r, �s) ∈ S denotes that all nearest-neighbour pairs of sites �r and �s are
included in the sums; S is the region with available data, which in general
may have an irregular shape. Each point �r = (x, y) away from the borders has
four nearest neighbours, which are the points (x − 1, y), (x + 1, y), (x, y − 1)
and (x, y + 1). It is obvious that the first sum in the cost function controls
the resemblance between the observed FP and the constructed complex image
Ω(�r). The value of the second sum is vanishing if the constraints i) and ii) are
implemented. The parameter ε controls the spectral properties of the filter.
A large value of ε produces a narrowband QF, which can effectively remove
a signal-dependent noise [246], as is the noise caused by contrast variations
or the speckle noise, without distortions of the signal. As the local frequency
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�ω(�r) is also unknown, the cost function (79) must be modified to incorporate
constraints set on the field �ω(�r), as is proposed in [248]:

U ′(Ω) = U(Ω) + μ

⎡

⎣
∑

[i,j,k]

Vijk(�ω) +
∑

[i,j,k,l]

Vijkl(�ω)

⎤

⎦ (80)

The minimization method proposed in [248] and characterized by the au-
thors as computationally expensive and applicable only to low fringe den-
sities is further improved in [246]. The idea is to build an estimate ω̂(�r) =
[ρ(�r) cos θ(�r), ρ(�r) sin θ(�r)] by sequentially applying a regularization procedure
to estimate the frequency vector orientation, θ(�r), the frequency sign and the
fringe density ρ(�r) at each point of the FP. The drawback of this approach
is the necessity to minimize several cost functions which is a time-consuming
procedure. The fringe orientation is given by the direction:

[cos θ(�r), sin θ(�r)] · ∇ϕ(�r) = Θ(�r) · ∇ϕ(�r) = 0 (81)

The fringe orientation at site �r is determined with π ambiguity:

θ(�r) = tan−1

[
∂Ĩ(�r)/∂x
∂Ĩ(�r)/∂y

]
± π

2
(82)

A n-dimensional quadrature transform is derived in [250] from the approxi-
mate equation

∇I(�r) · ∇ϕ(�r) ∼= −IV (�r) sin[ϕ(�r)] |∇ϕ(�r)|2 (83)

which is valid for a slowly varying contrast function IV (�r) and becomes exact if
the contrast of fringes is constant across the pattern. The QF is n-dimensional
because it can be applied in the case of �r(x1, x2, . . . , xn) in the form

Qn {IV (�r) cos[ϕ(�r)]} = �nϕ(�r) · ∇I(�r) |∇ϕ(�r)|−1 (84)

where �nϕ(�r) is the unit vector normal to the isophase contour at point �r. The
performance of Q2 for processing of closed FPs is compared to the vortex
operator developed in [229]. Both algorithms proposed in [229] and [250] rely
on two operators – an isotropic 2D Hilbert transform, and an operator which
gives the orientation 2π of the fringes. Determination of the fringe orientation
is more difficult task and requires a sequential approach. A regularized estima-
tor for determination of an orientational vector field �nϕ(�r) through minimiza-
tion of a cost function is proposed in [252]. It has been demonstrated in [253]
that information of fringe orientation can be derived from the local gradients
of the fringe intensity in a normalized FP obtained after a suitable bandpass
derivative filtering. To increase the accuracy of θ(�r) estimation, especially in
a low modulation zones, the authors apply neighbouring-direction averaging.
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An algorithm for accurate θ(�r) extraction with four different derivative kernels
is presented in [254].

Phase demodulation from a single FP based on phase-locked loop (PLL)
has been proposed in a series of works [10, 255, 256]. The advantage of this
technique is that the phase unwrapping is implicit in the PLL and, therefore,
is not necessary. The principle of the PLL is well known since 1932 [257]. The
output of the phase detector measures the difference between the phase of a
discrete input signal and the phase of a digital controlled oscillator (DCO).
From the output of the phase detector the digital filter produces a control
signal which is fed into the DCO. The control signal changes the frequency of
the DCO in a way to decrease the phase difference between the input signal
and the DCO. If the control signal is equal to zero, the DCO generates a
signal at a constant frequency which is called a free-running frequency of the
DCO. In the case of phase demodulation, the PLL system locks and tracks the
phase-modulated signal. The running frequency of the DCO is equal to the
spatial carrier frequency of the fringes. In tracking state, the frequency of the
DCO approaches the instantaneous frequency and is proportional to the con-
trol signal from the digital filter. Ideally, the control signal is a replica of the
derivative of the modulating signal. A zero-order digital filter (a filter with
only a proportional path) leads to a first-order digital PLL system, whereas
the filter with a first-order infinite impulse response gives a second-order PLL
[258]. The PLL can be applied only to open fringes. To achieve good results
with the PLL, the background intensity distribution must be strongly atten-
uated or removed by a high-pass filter, e.g. by differentiation of the intensity
distribution with respect to the x coordinate. The second assumption of the
PLL method is that the visibility of fringes is constant and one may set it
equal to 1.0. If applied to a row in a FP, Ĩ(x) = IV (x) cos[2πf0 + ϕ(x)], the
discretized first-order PLL system which is a nonlinear dynamic system is
usually described by [259]

ϕ̂(x+ 1) = ϕ̂(x) + τĨ(x) sin[2πf0 + ϕ̂(x)] (85)

Therefore, the phase estimate, ϕ̂, in a point (x + 1) is determined from the
phase estimate in the previous point corrected by the term τĨ(x) sin[2πf0 +
ϕ̂(x)]. However, to construct the estimate an a priori knowledge about the
spatial carrier frequency is required. In addition, the PLL system is not able to
demodulate a low frequency carrier pattern modulated by a wideband signal.
It may occur that the estimated phase map will be corrupted by the double
fringe frequency. Another serious drawback of the first-order PLL algorithm
is its low immunity to noise. To improve noise performance of the algorithm,
a second-order PLL algorithm is proposed in [257]. The improved algorithm
permits real time implementation; in [257] a frame rate of 25 processed frames
per second is reported. However, the higher frequency disturbances of the PLL
system itself are still present in the improved algorithm. The drawback of the
PLL algorithms is their inability to handle FPs with rapid phase variations.
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An idea to solve the phase modulation problem from the regularization
point of view is realized also in the so called phase-tracking approach which
gives a basis for creation of robust automatic algorithms for phase retrieval
from wideband noisy FPs bounded by arbitrarily shaped pupils without any
edge distortions. A regularized version of a phase-tracking detecting algorithm
which can be employed for open or closed fringes is described in [30]. The reg-
ularized phase-tracking (RPT) yields a continuous phase estimate without
phase unwrapping. The RPT uses a two terms cost function which imple-
ments the assumption of locally spatially monochromatic FP with smooth
and continuous phase [30]:

U =
∑

x,y∈S

Ux,y(ϕ̂,ωx,ωy)

Ux,y(ϕ0,ωx,ωy) =
∑

μ,η∈(Nxy∩S)

{
[Ĩ(μ,η) − cos ϕe(x, y,μ,η)]2 (86)

+ γ[ϕ̂(μ,η) − ϕe(x, y,μ,η)]2m(μ,η)
}

where ϕ̂(x, y) is the phase estimate that minimizes the cost function, S is the
region occupied by the analyzed FP, Nxy is the neighbourhood of the point of
interest (x, y), the term Ux,y is the energy of the RPT system at the site (x,
y), m(x,y) is an indicator which takes values of 1 and 0 to mark the previously
used pixels. The FP Ĩ(x, y) is obtained from I(x, y) after subtraction of the
background IB(x, y) and the normalization procedure IV (x, y) ≈ 1. The term
ϕe(x, y,μ,η) is the local phase plane that is used to approximate simultane-
ously the observed data through a cosinusoidal model and the phase values
that have already been estimated:

ϕe(x, y,μ,η) = ϕ̂(x, y) + ω̂x(x, y)(x − μ) + ω̂y(x, y)(y − η) (87)

where ω̂x,y (.) are the x- and y- components of the local frequency. As it can be
seen, the second term in the cost function is small only if the phase estimate is
very smooth. The parameter γ controls the smoothness of the phase estimate.
Due to the multimodal character of the cost function U, the problem of finding
its global minimum is difficult and computationally expensive. To avoid this
obstacle, the authors of [30] develop a sequential demodulating algorithm. The
phase is calculated by a propagative scheme from pixel to pixel. To start the
processing, a seed point (x0, y0) is chosen in S, preferably in the region with
low-frequency fringes. The function Ux,y(ϕ̂, ω̂x, ω̂y) is optimized in the site
(x0, y0) by finding ϕ̂(x0, y0) and ω̂x,y(x0, y0), and the indicator m(x0, y0) is set
to 1 to show that this site has been already processed. By using the indicator
function the other pixels are processed sequentially, and the first iteration of
the estimated phase map ϕ̂1(x, y) is obtained. The function Ux,y(ϕ̂,ωx,ωy) is
optimized in the site (x, y) by using a simple gradient descent. The output of
the RPT system gives the estimated phase already unwrapped. The authors
investigate also another approach to refine the first iteration estimate. The
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latter can be used as an input to the iteration conditional mode algorithm
which is designed to find a maximum a posteriori estimator for images that are
modelled as random vector fields ϑ(x, y) = [ϕ̂(x, y), ω̂x(x, y), ω̂y(x, y)]T with
posterior Gibbs distributions of the form P (ϑ) = exp[−U(ϑ)]/Z, where Z is a
normalization constant and U(ϑ) is an energy function. The algorithm finds a
local minimum of U(ϑ) with respect to ϑ at each site (x, y) in a small number
of steps. This shows that the RPT system can be considered as an adaptive
narrowband filter. This makes the RPT more robust to noise when wideband
FPs are processed. The cost function (121) ensures satisfactory results only
for low noise closed fringes. To deal with a high noise level, the cost function
must include an additional term. In [247] it is proposed to add a term that
regularizes the requirement that a slightly phase-shifted FP should resemble
the processed pattern. The authors recommend use of a constant phase shift
between 0.1π and 0.3π rad; they also propose a new scanning strategy which
initially demodulates pixels around the stationary points. The shortcoming of
this fringe-follower regularized phase tracking is the need of low-pass filtering
and a binary threshold operation.

The RPT is a local processing approach [214] in which appropriate cosine
elements are fitted to the FP in a local area. Thus spatially separated signals
have no influence on each other. It can be used for phase-shifted FPs, a single-
carrier fringes FP, and a single closed fringe FP. In addition, the RPT shows
very good behaviour close to the borders. The shortcomings are the necessity
to optimize the estimates of the phase and the local frequency simultaneously,
as well as the requirement to remove the background and to normalize the FP.
In [40] an improved version of the RPT with a more robust minimization algo-
rithm is used to demodulate squared-grating deflectograms. The propagative
scheme of phase demodulation of open and closed fringes with introduction
of a quality map is described in [260]. To avoid the necessity to normalize
the FP, a modified cost function is proposed in [261] which assumes that the
fringe modulation is also locally monochromatic and is described by

Ie
V (x, y,μ,η) = IV (x, y) + βx(x, y)(x− μ) + βy(x, y)(y − η) (88)

where βx,y are the local modulation frequencies.
The RPT approach is further improved in [259] by combining quadrature

estimation with the RPT. The sequential quadrature and phase tracking es-
timator builds the phase estimate by minimizing the following cost function:

U = [Ĩ(�r) − cos ϕ̂(�r)]2 +
[

∂Ĩ(�r)
∂x + ω̂x(�r) sin ϕ̂(�r)

]2

+
[

∂Ĩ(�r)
∂y + ω̂y(�r) sin ϕ̂(�r)

]2 (89)

The derivatives ∂Ĩ(�r)/∂x and ∂Ĩ(�r)/∂y are calculated from the first-order dif-
ferences. The first term of the cost function tends to zero when the estimate
ϕ̂(�r) is close to ϕ(�r). The second term in (89) enforces the requirement on
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the estimates ϕ̂(�r) and ω̂x,y(�r) to make possible approximation of the quadra-
ture of the signal. With this additional constraint the optimal values of ϕ̂(�r)
and ω̂x,y(�r) are found by search along the direction of the steepest descend
of the cost function [259]. The functions ω̂x, ω̂y, ϕ̂ are subject to optimiza-
tion with initial conditions ϕ̂(�ri)0 = ϕ̂(�ri−1)∞ω̂x(�ri)0 = ω̂x(�ri−1)∞ω̂x(�ri)0 =
ω̂x(�ri−1)∞, where the index ∞ denotes a stable pair ϕ̂, (ω̂x, ω̂y) of estimates
in the previous estimated site. This sequential approach evaluates the phase
without phase unwrapping. The quadrature phase-tracking system can be used
to demodulate open fringes without the need to know the carrier frequency,
unlike the case in the PLL approach. It outperforms the PLL system also by
its ability to process very low frequency fringes without worry of overlapping
of low and higher frequency spectra. The quadrature phase tracking can be
used to demodulate closed fringe patterns if instead of row-by-row scanning
strategy one follows the path of the fringes.

The regularized techniques based on the minimization of quadratic func-
tionals have been also applied for phase unwrapping in [217, 249]. In the
proposed algorithms the smoothing regularization term serves to control in-
terpolation (or extrapolation) especially in regions with bad data and to re-
duce the noise. This approach for phase unwrapping is extended to process
ESPI images characterized with high level of speckle noise and phase discon-
tinuities [262]. In [263] the authors propose to fit a global non-linear function
in each pixel instead of a local plane using the genetic algorithm technique.
The approach is checked for a polynomial fitting.

Phase demodulation from a single FP with open or closed fringes based
on numerical correlation between the measured FP and a virtual FP is devel-
oped in [264, 265]. The recorded FP is divided into zones and in each zone
the FP is approximated with parallel, inclinable, and equidistant fringes and
the correlation function in the zone of interest is minimized with respect to
amplitude modulation, background illumination, pitch, fringe orientation, and
phase. In [264] the virtual FP is built with a sinusoidal profile whereas in [265]
the approach is extended to polynomial fitting which allows for acceleration
of the computation. Phase demodulation by means of a non-linear filtering
method based on the theory of the Markov stochastic process is developed
in [266] as a recurrence procedure under the condition of a correlated phase
noise. The recurrent procedure enables real-time processing of noisy data and
phase retrieval without unwrapping.

3 Capture of Real Objects

3.1 Full-field Measurement

In a simple pattern projection system only one part of the object surface is
viewed both by projector and the image sensor which yields a solid angle of
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about 2π for reliable measurement. Measurement of surfaces with almost ver-
tical structures as e.g. cylindrical surfaces and of front and back sides of a
body requires 360 degrees of observation. In addition, effect of shadowing in
objects with a strong surface tilt or distortions caused by non-linear recording
due to specular reflection and diffraction at the object surface makes impossi-
ble observation within these parts of the image. To compensate for the loss of
information, systems with multiple directions of illumination or observation
are required. One of the main problems that should be solved for accurate
performance of such a system is to make precise transformation of the coordi-
nate systems attached to all sensors into a common global coordinate system.
To determine accurately the relative orientation of the sensors, they could be
fixed to mechanical devices that provide position information very precisely.
Such systems are expensive and vulnerable to small angular inaccuracies that
may cause large errors in coordinate calculation [267]. The matching of the
point clouds obtained as a result of phase demodulation of the FPs recorded
by different sensors can be done also numerically, e.g. by optimal fitting which
sometimes may lead to ambiguous solutions.

To overcome most of these illumination-caused difficulties, a 3D optical
sensor with a periodic illumination from at least three different directions
using a telecentric projection system is described in [268]. A grating with grey
code and with a sinusoidal intensity transmission is used for generation of a
structured light pattern. A nearly complete 3D measurement of coordinates
is realized for objects with very complex surface profiles by object rotation.
The system measures the phase within a number of patches from the object
surface. Determination of orientation of the patches in the space permits to
match them all in a global coordinate system. In [267] the PS measurement
system comprises two cameras and one projector. The cameras are calibrated
by using a reference object with a large number of circular targets which is
imaged by both cameras at different viewing angles. The global coordinates
of the reference object are restored using photogrammetric processing.

To solve the problem with shadowing and to build a good estimator of
3D coordinates, we introduce two approaches – one with double symmetri-
cal illumination (DSI) and the other with double symmetrical observation
(DSO) of the object [25]. The DSI pattern projection system with an ad-
justable Michelson interferometer is presented in Fig. 17. One of the mirrors
of the interferometer is attached to a PLZT for precise control of the phase
step with an optoelectronic feedback. The light source is a HeNe laser with
λ = 632.8 nm. Vertical interference fringes are divided by a beam splitter
into two arms (left – LA and right – RA) at equal intensity and projected onto
the specimen. Two series of FPs for a 5-frames phase-stepping algorithm are
recorded at two different spacings, d1 and d2. The angle of object illumination
is α in both arms. A Peltier cooled CCD camera with 604 × 288 pixels and
8-bits grey-scale coding captures the deformed FPs. The wrapped phase maps
are obtained as a difference between the calculated phase maps corresponding
to d1,2 for LA and RA illumination, respectively. The unwrapped phase maps



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Pattern Projection Profilometry for 3D Coordinates Measurement 143

Fig. 17. Block diagram of DSI approach a) projection system b) optical setup for
DSI, L – lens; BS – beam splitter; M – mirror; SF – spatial filter; S – shutter, PLZT –
phase-stepping device

are obtained with a quality-guided path following method [123]. The pixels
estimation is performed by a phase derivative variance algorithm in a 3 × 3
window and a quality map is produced that indicates low-quality regions. Af-
ter unwrapping, a new phase map is composed, as the shadow zones from
the phase map corresponding to one illumination direction are replaced and
adjusted with good quality zones from the other map. The DSI approach is
applied for examination of a test object (Fig. 18) and a real object (Fig. 19).
The shadow zones are successfully recovered in the composed surfaces.

The DSO system is realized with Max-Zhender interferometer. The light
source is an Ar+ laser with λ = 488 nm. Again two spacings, d1 and d2, and
5-frames phase-stepping algorithm are used. Two CCD cameras (resolution
604 × 288 pixels) positioned symmetrically capture the deformed FPs. The
part of the interference pattern is reflected on the phase detector for the op-
toelectronic feedback. The wrapped phase maps are obtained as a difference
between the calculated phase maps corresponding to d1,2 for each point of
view. The 3D distributions calculated from two observation points are trans-
formed to a common coordinate system (x′, y′, z′). Figure 20 presents the
experimental results for the DSO approach. The surface is successfully recon-
structed, although some shadow zones are not recovered. The experimental
results confirm that the increase of the angle and spacing difference ensure
better sensitivity. The choice of a suitable illumination/observation angle is
important to prevent partial recovery of the shadow zones and to avoid oc-
currence of areas that can not be observed with both CCD cameras. The real
and the calculated from the measured data 3D coordinates of the test object
are compared and the estimated error does not exceed ±3%.
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Fig. 18. Wrapped (top) and unwrapped (middle) phase maps and 3D visualization
for DSI measurement of a test object at d1 = 2.3mm and d2 = 8.5 mm; shadow zones
are masked with black colour. Left – LA direction, right – RA direction

3.2 Real-time Measurement

The two possible ways to realize a real-time measurement are to develop
processing approaches for phase demodulation of a single pattern (single-frame
or single-shot acquisition) or to record multiple patterns at high acquisition
speed that are processed by the well-known phase-stepping algorithms.

As we have seen in the previous sections, during the last two decades, vari-
ous methods for single frame fringe pattern demodulation have been explored.
The straightforward Fourier transform phase demodulation with and without
carrier fringes suffers from filtering problems caused by wideband noisy car-
riers and a limitation on object height variation. In addition, introduction of
the carrier frequency which follows the rate of change in the observed object
is not a trivial task and may require expensive equipment. The choice of filter
parameters is problem dependent and requires preliminary information about
the noise and bandwidth of the modulating signals. This jeopardizes automatic
processing of the FPs which is one of the main requirements for realization
of the capture process in a 3D dynamic display. The alternative spatial anal-
ysis method for phase retrieval from a single frame as the regularized phase
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Fig. 19. Wrapped (top) and unwrapped (middle) phase maps and 3D visualization
for SI measurement of a bronze statuette at d1 = 2mm and d2 = 7.5 mm; shadow
zones are masked with black colour. Left – LA direction, right – RA direction

tracking shows high accuracy both for patterns with open and closed fringes
and is capable to process noisy images with irregular shape borders. It fits lo-
cal plane surfaces to the recovered phase which makes unavoidable averaging
over several pixels. Due to the fact that it seeks the phase estimate through

Fig. 20. DSO experimental results of bronze statuette measurements with periods
of interference patterns d1 = 2 mm and d2 = 3.8 mm; Shadow zones are masked with
black colour. Wrapped phase, unwrapped phase 3D reconstruction
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minimization of a cost function, this approach involves iterative solving a set
of linear equations and is time-consuming. There have been developed other
methods as the fitting-error modified spatial fringe modulation [78]; phase de-
modulation based on fringe skeletonizing when an extreme map is introduced
by locating the fringes minima and maxima [187, 269, 270]; phase-stepping
recovery of objects by numerical generation of multiple frames from a single
recorded frame [271] or by developing a spatial modification based on assump-
tion of slowly varying phase [272].

The main drawback of many of the spatial analysis methods is the
inevitable averaging over several pixels in the neighbourhood of the point of in-
terest which hampers investigation of high-frequency content FPs. This stim-
ulates search and development of methods with multiple frames registration
and real-time demodulation. A single-shot measurement is realized in [273]
by simultaneous projection of three colour patterns (red, green and blue)
on the object at different angles and Fourier analysis of the deformed im-
age recorded by a single CCD camera. A phase-stepping method for mea-
suring the 3-D surface profile of a moving object by projection of a sinu-
soidal grating pattern and continuous intensity acquisition by three phase-
shifted linear array sensors positioned along the projected stripes is proposed
in [274]. The method is restricted to objects moving at a constant speed.
High-resolution 3D measurement of absolute coordinates using three phase-
shifted fringe patterns coded with three primary colours and recorded at data
acquisition speed of 90 fps is presented in [275]. Optimal intensity-modulation
projection technique is proposed in [276] based on optimization procedure for
rearranging the intensities in a projection pattern in order to improve de-
tection of the stripe-order and to make possible measurement in real-time.
A shadow moiré system with three TV cameras that is able to measure the
shape of an object in a dynamic event is described in [66, 277]. The entries
to the three cameras permit to construct a general nonlinear function of the
object depth, and using Newton–Raphson method for numerical analysis to
find the object profile. To improve the accuracy of the measurement, a new
algorithm is proposed that takes into the account the higher harmonics in the
projected FP.

The PS methodology can be applied for direct detection of the complex
amplitude at the image sensor and to reconstruct the 3D image from four
holograms that are sequentially recorded using reference waves phase-shifted
at 0, π/2, π and 3π/2. The main advantage is the ability to register only the
first-order diffracted wave. For real-time reconstruction quasi-PS digital holog-
raphy is proposed by implementing a spatial division multiplexing technique.
For the purpose, the digital hologram is divided into segments of 2 × 2 pix-
els. The four pixels are phase-shifted at the required phase step by numerical
generation and are further extracted and relocated to construct four phase-
shifted holograms. The improved reconstruction scheme of the method is
described in [278]. A method for automatic phase extraction from a sin-
gle pattern with closed noisy fringes based on an arccosine function is
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developed in [187]. To overcome phase jumps of π and sign ambiguities, an
extreme map is attached to the processed FP after adaptive weighted fil-
tering for noise reduction and contrast enhancing. The extreme map indi-
cates positions of fringe peaks and throughs throughout the entire area of
the FP.

High-speed 3-D surface contouring by DMD projection of a colour-encoded
digital FP whose RGB components comprise three phase-shifted at 2π/3 FPs
is tested in [279]. Using of DMD permits to enhance substantially the contrast
of the projected pattern. The image deformed by the object is recorded by a
colour CCD camera and sent to a computer to separate the RGB components
and to create three grey-scale phase-shifted images. The intensities for the
red, blue and green channels are recalculated from the recorded intensities
to compensate for the coupling between the three channels. With a standard
video camera, a contouring speed up to 60 frames/s can be expected. A high-
speed system in which a SLM is used to generate FPs with five optimized
spacings is described in [280]. To implement a four-frame algorithm 20 FPs
are recorded at video rate and processed in real time using a pipeline image
processor which ensures measurements of 250,000 coordinates in less than 1 s.
However, the pixilated nature of the SLM restricts the measurement accuracy
up to 5.10−4 from the object size [1].

A single-shot PMP system based on the PS principle can be realized by si-
multaneous projection of four phase-shifted at π/2 sinusoidal FPs of equal
intensity, contrast and spacing that are generated at four different wave-
lengths. To simplify the technical solution and to have better stability, we
analyze the system realization by using of sinusoidal phase diffraction grat-
ings [27]. The FP generation module consists of 4 blocks (FPG1-4) corre-
sponding to four different wavelengths (λ1 − λ4) as is shown in Fig. 21 left,
where the FPGs are FP Generators, DLs are 20mW CW single mode diode
lasers, G1 – G4 are phase gratings. The diode lasers emit at wavelengths:
λ1 = 785 nm, λ2 = 808 nm, λ2 = 830 nm and λ4 = 850 nm. To optimize the
optical efficiency of wavelength mixing, the interference mirrors (IM1 – 3) are
used as follows: the mirror IM1 transmitting λ1, λ2 and reflecting λ3, λ4; the
mirror IM2 transmitting λ1 and reflecting λ2 and the mirror IM3 transmit-
ting λ3 and reflecting λ4. The registration module (Fig. 21 right) consists of
four synchronized CCD cameras. The spectral separation of the individual
FPs is provided by a second set of mirrors IM1–3. The precise positioning
and adjustments of cameras and optical elements ensure parallel recording of
the FPs.

The proposed four-wavelength system relies on the independence of the
spatial period of the the Fresnel diffraction pattern created by a sinusoidal
phase grating with transmittance [281] t(x, y) = exp[im sin(2πx/d)], where m
is the modulation parameter and d is the spatial grating period along the x
axis, on the wavelength. At plane wave illumination, the complex amplitude
at distance z behind the grating is a structure periodical along x and z:
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Fig. 21. Optical arrangement of the four-wavelengths PMP system: left) FP gen-
eration module right) registration module

U(x, y, z) =J0(m) + 2
∞∑

q=0

{J2q(m) cos[4qπx/d]

×{
cos[(2q)2πλz/d2] − i sin[(2q)2πλz/d2]

}
+

+iJ2q+1(m) sin[(2q + 1)2πx/d] (90)

×{
cos[(2q + 1)2πλz/d2] − i sin[(2q + 1)2πλz/d2]

}}

The y-axis is parallel to the fringes, Jq is the Bessel function of the order q and
λ is the wavelength. By a proper choice of m, the influence of higher diffraction
orders could be minimized. Figure 22 shows intensity distribution behind the
phase grating (z = 0.1 m) at m = 3 and d = 0.4 mm as a function of the

Fig. 22. Intensity distribution behind a phase grating in a plane parallel to its
surface as a function of the wavelength
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Fig. 23. Fourier spectrum of the intensity distribution in Fig. 27 (the zero-term is
excluded)

wavelength whereas Fig. 23 depicts the corresponding Fourier spectrum. As it
can be seen, the projected FP is practically with an identical sinusoidal profile
for the chosen spectral region from 785nm to 850 nm, i.e the degrading effect
of the higher frequency components is overcome. The requirement for close
location along z of the Talbot planes corresponding to the four wavelengths
is also fulfilled. These features of the used sinusoidal phase gratings are the
most important for realization of real time operating PMP system for 3D
coordinate measurement of dynamic scenes.
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92. Carré P (1966) Installation et utilisation du comparateur photoelectrique et
interferentiel du Bureau International des Poids et Mesures. Metrologia 2:
13–23

93. Freischlad K, Koliopoulos C (1990) Fourier description of digital phase-
measuring interferometry. J Opt Soc Am A 7: 542–551

94. Kemao Q, Fangjun S, Xiaoping W (2000) Determination of the best phase
step of the Carr’e algorithm in phase shifting interferometry. Meas Sci Technol
11: 1220–1223

95. Stoilov G, Dragostinov T (1997) Phase-stepping interferometry: five-frame
algorithm with an arbitrary step. Opt Las Eng 28: 61–69

96. Kreis T (1993) Computer aided evaluation of fringe patterns. Opt Eng 19:
221–240



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

154 E. Stoykova et al.

97. De Lega XC, Jacquot P (1996) Deformation measurement with object-
induced dynamic phase shifting. Appl Opt 35: 5115–5120

98. Lai G, Yatagai T (1991) Generalized phase-shifting interferometry. J Opt Soc
Am A 8: 822–827

99. Kinnstaetter I, Lohmann A, Schwider J et al. (1988) Accuracy of phase shift-
ing interferometry. Appl Opt 27: 5082–5087

100. Wei C, Wang Z (1999) General phase-stepping algorithms with automatic
calibration of Phase Steps. Opt Eng 38: 1357–1360

101. Chen X, Gramaglia M, and Yeazell J (2000) Phase-shift calibration algorithm
for phase-shifting interferometry. J Opt Soc Am A 17: 2061–2066

102. Goldberg K, Bokor J (2001) Fourier-transform method of phase-shift deter-
mination. Appl Opt 40: 2886–2894

103. Guo C, Rong Z, He J et al. (2003) Determination of global phase shifts be-
tween interferograms by use of an energy-minimum algorithm. Appl Opt 42:
6514–6519

104. Marroquin J, Servin M, Rodriguez-Vera R (1998) Adaptive quadrature filters
for multiple phase-stepping images. Opt Las Eng 23: 238–240

105. Patil A, Rastogi P, Raphael B (2005) Phase-shifting interferometry by a
covariance-based method. Appl Opt 44: 5778–5785

106. Okada K, Sato A, Tsujiuchi J (1991) Simultaneous calculation of phase dis-
tribution and scanning phase shift in phase shifting interferometry. Opt Com-
mun 84: 118–124

107. Cai LZ, Liu Q, Yang XL (2003) Phase-shift extraction and wave-front re-
construction in phase-shifting interferometry with arbitrary phase steps. Opt
Lett 28: 1808–1810

108. Guo H, Zhao Z, Chen M (2007) Efficient iterative algorithm for phase-shifting
interferometry. Opt Las Eng 45: 281–292

109. Kim S-W, Kang M-G, Han G-S (1997) Accelerated phase-measuring al-
gorithm of least squares for phase-shifting interferometry. Opt Eng 36:
3101–3106

110. Han G-S, Kim S-W (1994) Numerical correction of reference phases in
phase-shifting interferometry by iterative least-squares fitting. Appl Opt 33:
7321–7325

111. Wang Z, Han B (2004) Advanced iterative algorithm for phase extraction of
randomly phase-shifted interferograms. Opt Lett 29: 1671–1674

112. Wang Z, Han B (2007) Advanced iterative algorithm for randomly phase-
shifted interferograms with intra- and inter-frame intensity variations. Opt
Las Eng 45: 274–280

113. Yun H, Hong C (2005) Interframe intensity correlation matrix for self-
calibration in phase-shifting interferometry. Appl Opt 44: 4860–4870

114. Cai LZ, Liu Q, Yang XL (2004) Generalized phase-shifting interferometry
with arbitrary unknown phase steps for diffraction objects. Opt Lett 29:
183–185

115. Qian K, Soon S, Asundi A (2004) Calibration of phase shift from two fringe
patterns. Meas Sci Technol 15: 2142–2144

116. Patil A, Rastogi P (2005) Rotational invariance approach for the evaluation of
multiple phases in interferometry in the presence of nonsinusoidal waveforms
and noise. J Opt Soc Am A 22: 1918–1929

117. Patil A, Langoju R, Rastogi P (2007) Phase-shifting interferometry using a
robust parameter estimation method. Opt Las Eng 45: 293–297



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Pattern Projection Profilometry for 3D Coordinates Measurement 155

118. Gorecki C (1992) Interferogram analysis using a Fourier transform method
for automatic 3D surface measurement. Pure Appl Opt 1: 103–110

119. Baldi A (2003) Phase unwrapping by region growing. Appl Opt 42: 2498–2505
120. Meneses J, Gharbi T, Humbert P (2005) Phase-unwrapping algorithm for

images with high noise content based on a local histogram. Appl Opt 44:
1207–1215

121. Herraez MA, Gdeisat MA, Burton DR et al. (2002) Robust, fast, and effec-
tive two-dimensional automatic phase unwrapping algorithm based on image
decomposition. Appl Opt 41: 7445–7455

122. Schofield MA, Zhu Y (2003) Fast phase unwrapping algorithm for interfero-
metric applications. Opt Lett 28: 1194–1196

123. Ghiglia DC, Pritt MD (1998) Two-Dimensional Phase Unwrapping.
J. Wiley&Sons

124. Arines J (2003) Least-squares modal estimation of wrapped phases: applica-
tion to phase unwrapping. Appl Opt 42: 3373–3378

125. Baldi A (2001) Two-dimensional phase unwrapping by quad-tree decomposi-
tion. Appl Opt 40: 1187–1194

126. Baldi A, Bertolino F, Ginesu F (2002) On the performance of some unwrap-
ping algorithms. Opt Las Eng 37: 313–330

127. Takajo H, Takahashi T (1988) Noniterative method for obtaining the exact
solution for the normal equation in least-squares phase estimation from the
phase difference. J Opt Soc Am A 5: 1818–1827

128. Hung KM, Yamada T (1998) Phase unwrapping by regions using least-squares
approach. Opt Eng 37: 2965–2970

129. Pritt MD, Shipman JS (1994) Least-squares two-dimensional phase unwrap-
ping using FFTs,” IEEE Trans on Geoscience and Remote Sensing 11:
706–708

130. Ghiglia DC, Romero LA (1996) Mimimum LP-norm two-dimensional phase
unwrapping. J Opt Soc Am A 13: 1–15

131. Marroquin JL, Rivera M, Botello S et al. (1999) Regularization methods for
processing fringe-pattern images. Appl Opt 38: 788–794

132. Lyuboshenko I, Maitre H, Maruani A (2002) Least-mean-squares phase un-
wrapping by use of an incomplete set of residue branch cuts. Appl Opt 41:
2129–2148

133. He X, Kang X, Tay C et al. (2002) Proposed algorithm for phase unwrapping.
Appl Opt 41: 7422–7428

134. Herraez MA, Burton DR, Lalor MJ et al. (2002) Fast two-dimensional phase-
unwrapping algorithm based on sorting by reliability following a noncontinu-
ous path. Appl Opt 41: 7437–7444

135. Stephenson P, Burton DR, Lalor MJ (1994) Data validation techniques in a
tiled phase unwrapping algorithm. Opt Eng 33: 3703–3708

136. Geldorf J (1987) Phase unwrapping by regions. In: Proc. SPIE 818, pp. 2–9
137. Huntley JM, Saldner H (1993) Temporal phase-unwrapping algorithm for

automated interferogram analysis. Appl Opt 32: 3047–3052
138. Huang MJ (2002) A quasi-one-frame phase-unwrapping algorithm through

zone-switching and zone-shifting hybrid implementation. Opt Commun 210:
187–200

139. Qiu W, Kang Y, Qin Q et al. (2006) Regional identification, partition, and in-
tegral phase unwrapping method for processing moiré interferometry images.
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